Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U.Va. team identifies gene that could halt spread of cancer


A gene may be responsible for halting the spread of cancer through the body, according to scientists at the University of Virginia Health System. The gene, called RhoGDI2, could also be used as a warning to help catch the spread of cancer in patients earlier. A multidisciplinary team of scientists, led by Dr. Dan Theodorescu, professor of urology and molecular physiology at U.Va., used advanced DNA technology to discover that low levels of RhoGDI2 were found more often in invasive cancer than in localized cancer. Their findings are published in the Nov. 15 issue of Cancer Research. This is the first study linking the RhoGDI2 gene to cancer metastasis.

"We found the greatest RhoGDI2 loss in invasive and metastatic cancer tissue. At this point, it is clear the gene plays a role in the cancer’s lethal progression to metastasis and not in the initial formation of the cancer, " Theodorescu said. "As such, it is one of only a handful of true metastasis suppressor genes known."

To identify RhoGDI2 as a metastasis suppressor gene, the U.Va. researchers "replaced" missing RhoGDI2 genes in human metastatic cancer cells that did not manufacture the gene on their own. "We replaced the gene in the most aggressive cell lines we had in the lab," Theodorescu said. "The first thing we noticed was that the cells grew normally. We were initially disappointed until we discovered that cells with the RhoGDI2 replaced had lost the ability to metastasize."

When the RhoGDI2 gene is active in a cancer cell, Theodorescu explained, the cell produces a protein that prevents the cancer cell from invading other organs. U.Va. scientists believe a future diagnostic test for low levels of this protein could be developed. The absence of the protein could serve as a red flag for physicians and help determine which cancers have the propensity to spread. Used in combination with other prognostic tests and biomarkers, RhoGDI2 expression may help determine the most effective and least invasive treatment for each patient based on the seriousness of the cancer.

If the gene can be "awakened" in metastatic cancers using gene therapy or other approaches, Theodorescu’s research could offer new therapeutic options to treat metastatic disease since once cancer metastasizes, or spreads, to other organs it is much less curable. In ongoing research, Theodorescu hopes to discover exactly how the RhoGDI2 gene regulates cell metastasis.

Scientists at U.Va. and The Genomics Institute of the Novartis Research Foundation contributing to the study were: J. J. Gildea, M. J. Seraj, G. Oxford, M. A. Harding, G. M. Hampton, C. A. Moskaluk, H. F. Frierson and M. R. Conaway. Their research was supported by the National Cancer Institute and the American Cancer Society.

Bob Beard | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>