Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. team identifies gene that could halt spread of cancer

15.11.2002


A gene may be responsible for halting the spread of cancer through the body, according to scientists at the University of Virginia Health System. The gene, called RhoGDI2, could also be used as a warning to help catch the spread of cancer in patients earlier. A multidisciplinary team of scientists, led by Dr. Dan Theodorescu, professor of urology and molecular physiology at U.Va., used advanced DNA technology to discover that low levels of RhoGDI2 were found more often in invasive cancer than in localized cancer. Their findings are published in the Nov. 15 issue of Cancer Research. This is the first study linking the RhoGDI2 gene to cancer metastasis.



"We found the greatest RhoGDI2 loss in invasive and metastatic cancer tissue. At this point, it is clear the gene plays a role in the cancer’s lethal progression to metastasis and not in the initial formation of the cancer, " Theodorescu said. "As such, it is one of only a handful of true metastasis suppressor genes known."

To identify RhoGDI2 as a metastasis suppressor gene, the U.Va. researchers "replaced" missing RhoGDI2 genes in human metastatic cancer cells that did not manufacture the gene on their own. "We replaced the gene in the most aggressive cell lines we had in the lab," Theodorescu said. "The first thing we noticed was that the cells grew normally. We were initially disappointed until we discovered that cells with the RhoGDI2 replaced had lost the ability to metastasize."


When the RhoGDI2 gene is active in a cancer cell, Theodorescu explained, the cell produces a protein that prevents the cancer cell from invading other organs. U.Va. scientists believe a future diagnostic test for low levels of this protein could be developed. The absence of the protein could serve as a red flag for physicians and help determine which cancers have the propensity to spread. Used in combination with other prognostic tests and biomarkers, RhoGDI2 expression may help determine the most effective and least invasive treatment for each patient based on the seriousness of the cancer.

If the gene can be "awakened" in metastatic cancers using gene therapy or other approaches, Theodorescu’s research could offer new therapeutic options to treat metastatic disease since once cancer metastasizes, or spreads, to other organs it is much less curable. In ongoing research, Theodorescu hopes to discover exactly how the RhoGDI2 gene regulates cell metastasis.


Scientists at U.Va. and The Genomics Institute of the Novartis Research Foundation contributing to the study were: J. J. Gildea, M. J. Seraj, G. Oxford, M. A. Harding, G. M. Hampton, C. A. Moskaluk, H. F. Frierson and M. R. Conaway. Their research was supported by the National Cancer Institute and the American Cancer Society.


Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>