Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria can’t do their thing if they don’t have cling

15.11.2002


Scientists open door to possible new treatments for urinary tract infections

Clingy bacteria often spell trouble. Scientists at Washington University School of Medicine in St. Louis have discovered how bacteria manufacture hair-like fibers used to cling to the lining of the kidney and bladder where they cause urinary tract infections (UTIs). The results are published in the Nov. 15 issue of the journal Cell.

"Our findings should lead to new drugs to treat UTIs by blocking the formation of these protein fibers," says study leader Scott J. Hultgren, Ph.D., the Helen Lehbrink Stoever Professor of Molecular Microbiology. "They also should improve our general understanding of how disease-causing bacteria build, fold and secrete proteins that enable them to cause disease."



Hultgren and his laboratory worked in collaboration with Gabriel Waksman, Ph.D., the Roy and Diana Vagelos Professor of Biochemistry and Molecular Biophysics at the School of Medicine, whose laboratory conducted the X-ray crystallography studies showing the structure of the molecules involved in the fiber assembly process. X-ray crystallography reveals the 3-D arrangement of atoms in proteins.

UTIs are the second most common infectious disease in the United States, says Hultgren. Each year they account for 100,000 hospital admissions and 8 million doctor visits. UTIs mainly affect women, about half of whom experience at least one UTI and 20-40 percent of whom develop recurrent infections.

UTIs begin when bacteria gain a foothold on cells lining the kidney or bladder and grow into colonies. They latch onto cells using tiny fibers known as pili. Similar fibers also are produced by bacteria responsible for a variety of gastric, respiratory and other infections.

The fibers are made up of identical individual pieces, or subunits, linked together like plastic snap beads. Earlier work by Hultgren and Waksman found that as each subunit is made within a bacterium, it is joined to another molecule known as a chaperone. Chaperone proteins are found in all living cells and, as their name implies, protect other molecules from trouble. In this case, they shield subunit proteins from interacting with one another at the wrong time and place.

The present study, however, found that the chaperones here also play a key role in fiber assembly. The crystallographic images revealed that each subunit molecule contains a deep groove. The images further showed that an edge of the chaperone molecule fits into this groove and holds it open.

The chaperone-subunit pair then shuttle to a place at the bacterial membrane where pili are assembling. There, the chaperone slips free of the subunit and is replaced by a tail-like strand projecting from another subunit at the base of the growing fiber.

The strand fits into the groove like a hot dog in a bun. With the chaperone no longer holding the groove open, the edge of the "bun" snaps shut around the strand, firmly locking the two subunits together. In this way, the fiber grows longer one "snap bead" at a time.

Discovering that the fibers consist of interlocking tails explains why bacterial pili are so durable and able to resist harsh conditions in the laboratory, says Hultgren.

The researchers now are working to develop a drug that will block the fiber-assembly process. Without pili to help them cling to cells, the bacteria could be swept more readily from the urinary tract and prevented from forming colonies.

"This collaboration is an example of microbiology, biochemistry and structural biology coming together in a beautiful and complementary fashion," says Waksman. "As a result, we now have a much better idea of how bacteria produce pili, and that knowledge may lead to new and better treatments for UTIs and other bacterial diseases."


Sauer FG, Pinkner JS, Waksman G, Hultgren SJ. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell, 111(4), 543, Nov. 15, 2002.

Grants from the National Institutes of Health supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>