Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular tag pinpoints which breast cancer tumors are most likely to spread


A new molecular tag discovered by scientists at The University of Texas M. D. Anderson Cancer Center may help doctors decide which breast cancer patients need more aggressive treatment and which can forego the potentially toxic course of chemotherapy.

Khandan Keyomarsi, Ph.D., associate professor in experimental radiation at M. D. Anderson, and her colleagues report in the November 14, 2002, issue of the New England Journal of Medicine that high levels of a protein called cyclin E are closely associated with aggressive, invasive breast cancer. The study, conducted with tissue samples of current or former breast cancer patients, appears to show that cyclin E is a much better predictor of patient outcome than any current predictive marker. However, says Keyomarsi, the study must be repeated with newly diagnosed patients to determine its true predictive value.

The ability to predict which breast cancer tumors will recur or spread throughout the body is an important aspect of breast cancer treatment, says Keyomarsi. Currently, the prognosis for women diagnosed with breast cancer is determined by whether tumor cells have spread to lymph nodes. But some women who have cancer cells in the lymph nodes never have a recurrence, while others whose cancer has not spread do have a recurrence. Yet many women, after discussions with their doctors, opt to undergo grueling chemotherapy in hopes of ensuring any rogue cancer cells that may be present are killed. If an accurate predictive marker were available, many women could be spared chemotherapy, she says.

In the study, Keyomarsi and her colleagues looked for the presence of cyclin E because when this protein is present at high levels inside cancer cells it signals cells to multiply all the time. In normal cells, cyclin E is present only for a short time and helps keep cell division under tight control. In addition, the scientists discovered smaller versions of cyclin E that are not present in normal cells. These low molecular weight versions are generated by an enzyme that chops up the normal cyclin E and in the process creates a new form that is even better at signaling cells to divide.

"We have shown the occurrence of low molecular weight forms of cyclin E that are not found in normal cells and are present throughout cell cycle in cancer cells," says Keyomarsi. "These abnormal forms of cyclin E are always giving the ’go’ signal, telling cells to divide."

The scientists examined tumor tissue from 395 patients with breast cancer. Of those patients with stage one breast cancer, in which a single tumor is found and the cancer has not yet spread, about 10 percent had high levels of cyclin E in their cancer cells. All of these patients had died from a recurrence of breast cancer within five years of diagnosis, while none of the patients who had low levels of cyclin E had died. The proportion of tumors that had high levels of cyclin E increased with increasing extent of disease.

"This study shows that the presence of low molecular weight forms of cyclin E has a very powerful prognostic value," says Keyomarsi. "However, we have to validate the study using newly diagnosed patients in which we are blinded to the diagnosis. We are in the midst of that study now. If it bears out our initial results, we will try to get it into the clinic as soon as possible, though it may be at least one year."

Keyomarsi points out, however, that the specialized laboratory technique, called a western blot, used in her study is not available in most clinical laboratories that test patient samples. In order for the results to be used, testing laboratories would need to learn how do use the new technique.

"My hope is that this technique may help ease the burden of chemotherapy among breast cancer patients," says Keyomarsi. "Women who don’t overexpress cyclin E may not need chemotherapy, which kills all dividing cells and can do significant damage to other tissues and organs."

For those patients who have high levels of cyclin E more aggressive treatment would be indicated, she says. And intensive research is now underway at M. D. Anderson to find ways to stop production or block cyclin E in those patients where it is present.

Keyomarsi’s research was supported by grants from the U.S. Army Medical Research and Material Command and the National Cancer Institute. Dr. Keyomarsi holds U.S. patents (#5,543,291 and #5,763,219) on the use of cyclin E to detect and treat cancer.

Laura Sussman | EurekAlert!

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>