Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Bioengineers Develop First Computer Model that Predicts Disease Variant Based on Genetic Defect

14.11.2002


Bioengineers have for the first time used a computer model to relate specific genetic mutations to exact variations of a disease. This is the first model-based system for predicting phenotype (function of the cell or organism) based on genotype (an individual’s DNA).


Bernhard Palsson, Professor, Bioengineering



In the study, published in Genome Research (Vol. 12, Issue 11, 1687-1692, November 2002, article link), Bernhard Palsson and his team at UCSD’s Jacobs School of Engineering reviewed genetic information from patients who have an enzyme deficiency that causes hemolytic anemia. Physicians have recorded some 150 DNA sequence variations that could be involved in this type of anemia. By inserting the specific DNA sequences into a computer model for red blood cell metabolism, Palsson accurately predicted which mutations would result in chronic hemolytic anemia and which would cause a less severe version of the disease.

“Eventually, there could be a kind of databank of specific genetic mutations that cause precise disease variants,” says Palsson. “Some mutations will be severe, others benign. And every variation of a disease could be treated differently. This could be incredibly useful for drug development and will aid physicians in creating effective treatment plans for individuals.” A person’s risk of getting a disease is often influenced by a permutation in a single base pair in their genome, called a single nucleotide polymorphism (SNP). And for any one type of cancer such as breast cancer, there may be as much as a dozen variations of the disease. Now that the human genome has been mapped, biotechnology companies and scientists are feverishly developing processes to uncover SNPs that are related to variations of diseases such as cancer, heart disease and a host of inherited disorders.


Until now, most approaches have relied on statistical correlations between reported mutations and occurrences of disease variants.

Palsson’s technique actually defines the mechanism by which a genetic defect causes a disease. He was able to make this mathematical calculation by building a computer model that is based on the well-known metabolism in the human red blood cell.

“The model is like the wiring diagram or design drawings for the cell,” says Palsson. “It incorporates all the genes in the cell, the products of each, and the interwoven process of how those products interact to produce cellular functions. Once we have this computer (now called in silico) model, it is in principle a fairly straightforward process to alter a specific DNA sequence, run a simulation on the program, and receive information back about how the defect impacts the cell’s function.”

Palsson notes that his model is based on 30 years of chemistry and biology research about metabolism in the red blood cell, which is one of the human body’s simplest and most well-understood cell types.

“Building in silico models is a complex process requiring hard-to-find expertise, and it will take a few years before these kinds of models will become common place for diagnosis, management of disease, and development of therapeutics,” says Palsson. “It has become a widely held expectation by an increasing number of scientists that in silico models of human disease processes will significantly impact future delivery of health care. Our research is significant in that we are demonstrating the proof of concept for the first time.”

UCSD has formed a spin-off company, called Genomatica, to bring Palsson’s in silico modeling technologies into commercial use.

Denine Hagen | EurekAlert!
Further information:
http://www.genome.org/cgi/content/full/12/11/1687
http://gcrg.ucsd.edu/personnel/palsson.htm
http://www.genomatica.com/index1.html

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>