Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Bioengineers Develop First Computer Model that Predicts Disease Variant Based on Genetic Defect

14.11.2002


Bioengineers have for the first time used a computer model to relate specific genetic mutations to exact variations of a disease. This is the first model-based system for predicting phenotype (function of the cell or organism) based on genotype (an individual’s DNA).


Bernhard Palsson, Professor, Bioengineering



In the study, published in Genome Research (Vol. 12, Issue 11, 1687-1692, November 2002, article link), Bernhard Palsson and his team at UCSD’s Jacobs School of Engineering reviewed genetic information from patients who have an enzyme deficiency that causes hemolytic anemia. Physicians have recorded some 150 DNA sequence variations that could be involved in this type of anemia. By inserting the specific DNA sequences into a computer model for red blood cell metabolism, Palsson accurately predicted which mutations would result in chronic hemolytic anemia and which would cause a less severe version of the disease.

“Eventually, there could be a kind of databank of specific genetic mutations that cause precise disease variants,” says Palsson. “Some mutations will be severe, others benign. And every variation of a disease could be treated differently. This could be incredibly useful for drug development and will aid physicians in creating effective treatment plans for individuals.” A person’s risk of getting a disease is often influenced by a permutation in a single base pair in their genome, called a single nucleotide polymorphism (SNP). And for any one type of cancer such as breast cancer, there may be as much as a dozen variations of the disease. Now that the human genome has been mapped, biotechnology companies and scientists are feverishly developing processes to uncover SNPs that are related to variations of diseases such as cancer, heart disease and a host of inherited disorders.


Until now, most approaches have relied on statistical correlations between reported mutations and occurrences of disease variants.

Palsson’s technique actually defines the mechanism by which a genetic defect causes a disease. He was able to make this mathematical calculation by building a computer model that is based on the well-known metabolism in the human red blood cell.

“The model is like the wiring diagram or design drawings for the cell,” says Palsson. “It incorporates all the genes in the cell, the products of each, and the interwoven process of how those products interact to produce cellular functions. Once we have this computer (now called in silico) model, it is in principle a fairly straightforward process to alter a specific DNA sequence, run a simulation on the program, and receive information back about how the defect impacts the cell’s function.”

Palsson notes that his model is based on 30 years of chemistry and biology research about metabolism in the red blood cell, which is one of the human body’s simplest and most well-understood cell types.

“Building in silico models is a complex process requiring hard-to-find expertise, and it will take a few years before these kinds of models will become common place for diagnosis, management of disease, and development of therapeutics,” says Palsson. “It has become a widely held expectation by an increasing number of scientists that in silico models of human disease processes will significantly impact future delivery of health care. Our research is significant in that we are demonstrating the proof of concept for the first time.”

UCSD has formed a spin-off company, called Genomatica, to bring Palsson’s in silico modeling technologies into commercial use.

Denine Hagen | EurekAlert!
Further information:
http://www.genome.org/cgi/content/full/12/11/1687
http://gcrg.ucsd.edu/personnel/palsson.htm
http://www.genomatica.com/index1.html

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>