Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sepsis vaccine proves protective in preliminary studies at The Scripps Research Institute

13.11.2002


A group of researchers from The Scripps Research Institute (TSRI) have designed a vaccine that might be used to protect against the pernicious consequences of severe sepsis, an acute and often deadly disease that is estimated to strike 700,000 Americans a year and millions more worldwide.



Though the new vaccine has not yet been applied to clinical trials in humans, it has worked well in preclinical studies, the results of which the team reports in the latest issue of the journal Angewandte Chemie.

"The vaccine provided outstanding protection," says author Kim Janda, Ph.D., who holds the Ely R. Callaway, Jr. Chair in Chemistry at TSRI.


A Rapid and Deadly Disease

Sepsis, also known as septic shock and systemic inflammatory response syndrome, is characterized by shock to one’s organs following poisoning with endotoxins--chemical components of certain bacteria. The endotoxin molecules themselves are not particularly harmful, but the way that the immune system reacts to them is.

When bacteria like the deadly N. meningitidis invade the body, they trigger the immune system to stage a biochemical defense. One of the ways that the body initially responds to such an infection is to recruit white blood cells, like macrophages, which engulf the pathogens and destroy them. The macrophages also fight the pathogens by producing chemicals at the site of an infection that induce inflammation.

However, there is a limit to how much inflammation a body can take. If the infection is widespread, the systemic endotoxin levels can be so high that the macrophages respond by producing a lethal amount of inflammatory chemicals. One of these chemicals is called tumor necrosis factor alpha (TNF-alpha).

The prognosis for sepsis is dire. It can affect many parts of the body, from the bones to the brain, and death due to septic shock can occur in a matter of hours. According to the National Institutes of Health, two percent of all hospital admissions suffer from sepsis, and its typical case-fatality rate is around 30 percent. According to the Centers for Disease Control and Prevention, sepsis is one of the ten leading causes of both infant and adult mortality in the United States, and, in 1999, directly caused more than 30,000 deaths.

A New Approach

The best current treatment is to administer broad-spectrum antibiotics to try to quell the infection after the fact, but this is often too little too late and scientists have sought a better approach for years.

Since many patients who fall victim to sepsis acquire bacterial infections in the hospital, after undergoing major surgeries for instance, one approach would be to try to "prophylactically" protect a patient before he/she undergoes surgery.

Many scientists have sought to achieve such protection through passive immunization--by infusing antibodies into the patient to target the endotoxins. Many of the compounds that have been tested to date have proven to have limited effect, though, for reasons that are not entirely clear.

The TSRI team’s approach is fundamentally different. They sought to use active immunization to protect patients against sepsis. Active immunization, used in measles, smallpox and polio vaccines, involves exposing patients to a substance that resembles the pathogen that one is immunizing against.

If the vaccine works, the body responds with an effective immune response both to the vaccine and to the pathogens that are later encountered. In this case, the TSRI team designed a synthetic "glycoconjugate" that mimics one of the most common bacterial endotoxins, called "lipid A."

Post-vaccination, they observed a nearly 95 percent reduction in the inflammatory chemical TNF-alpha which indicated that the vaccine successfully controlled the body’s response to infection.

Significantly, the vaccine seems to raise a broad antibody response, possibly inducing the formation of antibodies that have some enzymatic ability and can "hydrolyze" or chop up the lipid A. Researchers designed the vaccine to raise such "catalytic" antibodies by making a portion of it resemble a form of lipid A. This two-pronged approach may be the reason why the vaccine proved particularly protective.

"Now that we have evidence that [the vaccine] provides good protection in a mouse model, we really want to go on to a clinical working model," says Paul Wentworth, Jr, Ph.D., who is a corresponding author on the paper.

The researchers are also now looking to formulate their synthetic glycoconjugate into a slow-release form that can be administered well in advance of major surgery, for instance, in the hope of someday providing outstanding protection to hospital patients.

The article, "Active Immunization with a Glycolipid Transition State Analog Protects against Endotoxic Shock," is authored by Lyn H. Jones, Laurence J. Altobell III, Mary T. MacDonald, Nicholas A. Boyle, Paul Wentworth, Jr., Richard A. Lerner, and Kim D. Janda and appears in the November 18, 2002 issue of the journal Angewandte Chemie.


###
This work was supported by The National Institutes of Health and The Skaggs Institute for Chemical Biology, and also funded through a Merck Science Initiative Research Fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>