Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sepsis vaccine proves protective in preliminary studies at The Scripps Research Institute

13.11.2002


A group of researchers from The Scripps Research Institute (TSRI) have designed a vaccine that might be used to protect against the pernicious consequences of severe sepsis, an acute and often deadly disease that is estimated to strike 700,000 Americans a year and millions more worldwide.



Though the new vaccine has not yet been applied to clinical trials in humans, it has worked well in preclinical studies, the results of which the team reports in the latest issue of the journal Angewandte Chemie.

"The vaccine provided outstanding protection," says author Kim Janda, Ph.D., who holds the Ely R. Callaway, Jr. Chair in Chemistry at TSRI.


A Rapid and Deadly Disease

Sepsis, also known as septic shock and systemic inflammatory response syndrome, is characterized by shock to one’s organs following poisoning with endotoxins--chemical components of certain bacteria. The endotoxin molecules themselves are not particularly harmful, but the way that the immune system reacts to them is.

When bacteria like the deadly N. meningitidis invade the body, they trigger the immune system to stage a biochemical defense. One of the ways that the body initially responds to such an infection is to recruit white blood cells, like macrophages, which engulf the pathogens and destroy them. The macrophages also fight the pathogens by producing chemicals at the site of an infection that induce inflammation.

However, there is a limit to how much inflammation a body can take. If the infection is widespread, the systemic endotoxin levels can be so high that the macrophages respond by producing a lethal amount of inflammatory chemicals. One of these chemicals is called tumor necrosis factor alpha (TNF-alpha).

The prognosis for sepsis is dire. It can affect many parts of the body, from the bones to the brain, and death due to septic shock can occur in a matter of hours. According to the National Institutes of Health, two percent of all hospital admissions suffer from sepsis, and its typical case-fatality rate is around 30 percent. According to the Centers for Disease Control and Prevention, sepsis is one of the ten leading causes of both infant and adult mortality in the United States, and, in 1999, directly caused more than 30,000 deaths.

A New Approach

The best current treatment is to administer broad-spectrum antibiotics to try to quell the infection after the fact, but this is often too little too late and scientists have sought a better approach for years.

Since many patients who fall victim to sepsis acquire bacterial infections in the hospital, after undergoing major surgeries for instance, one approach would be to try to "prophylactically" protect a patient before he/she undergoes surgery.

Many scientists have sought to achieve such protection through passive immunization--by infusing antibodies into the patient to target the endotoxins. Many of the compounds that have been tested to date have proven to have limited effect, though, for reasons that are not entirely clear.

The TSRI team’s approach is fundamentally different. They sought to use active immunization to protect patients against sepsis. Active immunization, used in measles, smallpox and polio vaccines, involves exposing patients to a substance that resembles the pathogen that one is immunizing against.

If the vaccine works, the body responds with an effective immune response both to the vaccine and to the pathogens that are later encountered. In this case, the TSRI team designed a synthetic "glycoconjugate" that mimics one of the most common bacterial endotoxins, called "lipid A."

Post-vaccination, they observed a nearly 95 percent reduction in the inflammatory chemical TNF-alpha which indicated that the vaccine successfully controlled the body’s response to infection.

Significantly, the vaccine seems to raise a broad antibody response, possibly inducing the formation of antibodies that have some enzymatic ability and can "hydrolyze" or chop up the lipid A. Researchers designed the vaccine to raise such "catalytic" antibodies by making a portion of it resemble a form of lipid A. This two-pronged approach may be the reason why the vaccine proved particularly protective.

"Now that we have evidence that [the vaccine] provides good protection in a mouse model, we really want to go on to a clinical working model," says Paul Wentworth, Jr, Ph.D., who is a corresponding author on the paper.

The researchers are also now looking to formulate their synthetic glycoconjugate into a slow-release form that can be administered well in advance of major surgery, for instance, in the hope of someday providing outstanding protection to hospital patients.

The article, "Active Immunization with a Glycolipid Transition State Analog Protects against Endotoxic Shock," is authored by Lyn H. Jones, Laurence J. Altobell III, Mary T. MacDonald, Nicholas A. Boyle, Paul Wentworth, Jr., Richard A. Lerner, and Kim D. Janda and appears in the November 18, 2002 issue of the journal Angewandte Chemie.


###
This work was supported by The National Institutes of Health and The Skaggs Institute for Chemical Biology, and also funded through a Merck Science Initiative Research Fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>