Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sepsis vaccine proves protective in preliminary studies at The Scripps Research Institute

13.11.2002


A group of researchers from The Scripps Research Institute (TSRI) have designed a vaccine that might be used to protect against the pernicious consequences of severe sepsis, an acute and often deadly disease that is estimated to strike 700,000 Americans a year and millions more worldwide.



Though the new vaccine has not yet been applied to clinical trials in humans, it has worked well in preclinical studies, the results of which the team reports in the latest issue of the journal Angewandte Chemie.

"The vaccine provided outstanding protection," says author Kim Janda, Ph.D., who holds the Ely R. Callaway, Jr. Chair in Chemistry at TSRI.


A Rapid and Deadly Disease

Sepsis, also known as septic shock and systemic inflammatory response syndrome, is characterized by shock to one’s organs following poisoning with endotoxins--chemical components of certain bacteria. The endotoxin molecules themselves are not particularly harmful, but the way that the immune system reacts to them is.

When bacteria like the deadly N. meningitidis invade the body, they trigger the immune system to stage a biochemical defense. One of the ways that the body initially responds to such an infection is to recruit white blood cells, like macrophages, which engulf the pathogens and destroy them. The macrophages also fight the pathogens by producing chemicals at the site of an infection that induce inflammation.

However, there is a limit to how much inflammation a body can take. If the infection is widespread, the systemic endotoxin levels can be so high that the macrophages respond by producing a lethal amount of inflammatory chemicals. One of these chemicals is called tumor necrosis factor alpha (TNF-alpha).

The prognosis for sepsis is dire. It can affect many parts of the body, from the bones to the brain, and death due to septic shock can occur in a matter of hours. According to the National Institutes of Health, two percent of all hospital admissions suffer from sepsis, and its typical case-fatality rate is around 30 percent. According to the Centers for Disease Control and Prevention, sepsis is one of the ten leading causes of both infant and adult mortality in the United States, and, in 1999, directly caused more than 30,000 deaths.

A New Approach

The best current treatment is to administer broad-spectrum antibiotics to try to quell the infection after the fact, but this is often too little too late and scientists have sought a better approach for years.

Since many patients who fall victim to sepsis acquire bacterial infections in the hospital, after undergoing major surgeries for instance, one approach would be to try to "prophylactically" protect a patient before he/she undergoes surgery.

Many scientists have sought to achieve such protection through passive immunization--by infusing antibodies into the patient to target the endotoxins. Many of the compounds that have been tested to date have proven to have limited effect, though, for reasons that are not entirely clear.

The TSRI team’s approach is fundamentally different. They sought to use active immunization to protect patients against sepsis. Active immunization, used in measles, smallpox and polio vaccines, involves exposing patients to a substance that resembles the pathogen that one is immunizing against.

If the vaccine works, the body responds with an effective immune response both to the vaccine and to the pathogens that are later encountered. In this case, the TSRI team designed a synthetic "glycoconjugate" that mimics one of the most common bacterial endotoxins, called "lipid A."

Post-vaccination, they observed a nearly 95 percent reduction in the inflammatory chemical TNF-alpha which indicated that the vaccine successfully controlled the body’s response to infection.

Significantly, the vaccine seems to raise a broad antibody response, possibly inducing the formation of antibodies that have some enzymatic ability and can "hydrolyze" or chop up the lipid A. Researchers designed the vaccine to raise such "catalytic" antibodies by making a portion of it resemble a form of lipid A. This two-pronged approach may be the reason why the vaccine proved particularly protective.

"Now that we have evidence that [the vaccine] provides good protection in a mouse model, we really want to go on to a clinical working model," says Paul Wentworth, Jr, Ph.D., who is a corresponding author on the paper.

The researchers are also now looking to formulate their synthetic glycoconjugate into a slow-release form that can be administered well in advance of major surgery, for instance, in the hope of someday providing outstanding protection to hospital patients.

The article, "Active Immunization with a Glycolipid Transition State Analog Protects against Endotoxic Shock," is authored by Lyn H. Jones, Laurence J. Altobell III, Mary T. MacDonald, Nicholas A. Boyle, Paul Wentworth, Jr., Richard A. Lerner, and Kim D. Janda and appears in the November 18, 2002 issue of the journal Angewandte Chemie.


###
This work was supported by The National Institutes of Health and The Skaggs Institute for Chemical Biology, and also funded through a Merck Science Initiative Research Fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>