Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists discover link between infections in mothers and brain injuries in babies

12.11.2002


Scientists at UT Southwestern Medical Center at Dallas have unraveled a mysterious connection – a potential mechanism that links brain injuries in infants to an infection in the mother’s placenta.



Their findings, published in the October edition of Pediatrics, could eventually lead to diagnostic tests for infants and mothers that could help prevent brain injury.

"The most critical issue in preventing and treating brain injury in infants is figuring out where the damage begins and what triggers it," said Dr. Jeffrey Perlman, professor of pediatrics at UT Southwestern and senior author of the study. "Our study opens a new pathway of understanding, but we still don’t have all the answers."


The study reveals the link between brain injury that occurs during the perinatal period - immediately before and after birth - and an infection in the mother’s placenta, called chorioamnionitis, which causes fever, inflammation, and abnormally high heart rates in the unborn child.

"Our study revealed the cause of brain injury in infants is not as simplistic as initial studies indicated," said Perlman, also professor of obstetrics and gynecology, and anesthesiology and pain management. "These findings bring us a small step closer to understanding how the brain is injured and could eventually lead to new strategies for controlling infection and, more importantly, for preventing brain injury."

Earlier studies have pointed to lack of oxygen as the primary cause for neonatal brain injuries, including cerebral palsy. Brain injury during the perinatal period is one of the most common causes of severe, long-term neurologic deficit in infants and children. Each year, one in 1,000 babies is born with brain injury in the United States - about 4,000 annually.

The UT Southwestern researchers studied 61 full-term infants who were admitted to the neonatal intensive care unit at Parkland Memorial Hospital over a two-year period between July 1999 and December 2001. They examined the babies’ umbilical cord blood for infection and also conducted extensive neurological examinations twice in the first 24 hours of life.

"We discovered a significant correlation between the increased elevation of inflammation in the mother’s placenta and a reduction in neurological function in infants," Perlman said. "This is the first time such a relationship has been established."

By measuring specific inflammation markers in cord blood at birth and then again at 12 to 14 hours of age, researchers discovered infants with higher levels were "floppy," or had poor muscle tone.

"The five infants with the highest level of biomarkers either had a brain dysfunction known as encephalopathy or seizures," said Dr. Octavio Ramilo, study collaborator and associate professor of pediatrics and microbiology.

Brain injuries in newborns usually result in weakness or paralysis, mental retardation and/or seizures. About half of the children suffering from brain injuries must use braces, walkers, or wheelchairs as they get older.

Other UT Southwestern contributors to the study were Dr. Abbot Laptook, professor of pediatrics, and obstetrics and gynecology; and Dr. Hasan Jafri, assistant professor of pediatrics. Dr. Lina Shalak, the principal author of the study, was a fellow in neonatal intensive care at UT Southwestern at the time of the study and is currently a pediatric resident at Children’s Medical Center of Dallas.

Barbara Bedrick | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>