Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists discover link between infections in mothers and brain injuries in babies

12.11.2002


Scientists at UT Southwestern Medical Center at Dallas have unraveled a mysterious connection – a potential mechanism that links brain injuries in infants to an infection in the mother’s placenta.



Their findings, published in the October edition of Pediatrics, could eventually lead to diagnostic tests for infants and mothers that could help prevent brain injury.

"The most critical issue in preventing and treating brain injury in infants is figuring out where the damage begins and what triggers it," said Dr. Jeffrey Perlman, professor of pediatrics at UT Southwestern and senior author of the study. "Our study opens a new pathway of understanding, but we still don’t have all the answers."


The study reveals the link between brain injury that occurs during the perinatal period - immediately before and after birth - and an infection in the mother’s placenta, called chorioamnionitis, which causes fever, inflammation, and abnormally high heart rates in the unborn child.

"Our study revealed the cause of brain injury in infants is not as simplistic as initial studies indicated," said Perlman, also professor of obstetrics and gynecology, and anesthesiology and pain management. "These findings bring us a small step closer to understanding how the brain is injured and could eventually lead to new strategies for controlling infection and, more importantly, for preventing brain injury."

Earlier studies have pointed to lack of oxygen as the primary cause for neonatal brain injuries, including cerebral palsy. Brain injury during the perinatal period is one of the most common causes of severe, long-term neurologic deficit in infants and children. Each year, one in 1,000 babies is born with brain injury in the United States - about 4,000 annually.

The UT Southwestern researchers studied 61 full-term infants who were admitted to the neonatal intensive care unit at Parkland Memorial Hospital over a two-year period between July 1999 and December 2001. They examined the babies’ umbilical cord blood for infection and also conducted extensive neurological examinations twice in the first 24 hours of life.

"We discovered a significant correlation between the increased elevation of inflammation in the mother’s placenta and a reduction in neurological function in infants," Perlman said. "This is the first time such a relationship has been established."

By measuring specific inflammation markers in cord blood at birth and then again at 12 to 14 hours of age, researchers discovered infants with higher levels were "floppy," or had poor muscle tone.

"The five infants with the highest level of biomarkers either had a brain dysfunction known as encephalopathy or seizures," said Dr. Octavio Ramilo, study collaborator and associate professor of pediatrics and microbiology.

Brain injuries in newborns usually result in weakness or paralysis, mental retardation and/or seizures. About half of the children suffering from brain injuries must use braces, walkers, or wheelchairs as they get older.

Other UT Southwestern contributors to the study were Dr. Abbot Laptook, professor of pediatrics, and obstetrics and gynecology; and Dr. Hasan Jafri, assistant professor of pediatrics. Dr. Lina Shalak, the principal author of the study, was a fellow in neonatal intensive care at UT Southwestern at the time of the study and is currently a pediatric resident at Children’s Medical Center of Dallas.

Barbara Bedrick | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>