Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists discover link between infections in mothers and brain injuries in babies

12.11.2002


Scientists at UT Southwestern Medical Center at Dallas have unraveled a mysterious connection – a potential mechanism that links brain injuries in infants to an infection in the mother’s placenta.



Their findings, published in the October edition of Pediatrics, could eventually lead to diagnostic tests for infants and mothers that could help prevent brain injury.

"The most critical issue in preventing and treating brain injury in infants is figuring out where the damage begins and what triggers it," said Dr. Jeffrey Perlman, professor of pediatrics at UT Southwestern and senior author of the study. "Our study opens a new pathway of understanding, but we still don’t have all the answers."


The study reveals the link between brain injury that occurs during the perinatal period - immediately before and after birth - and an infection in the mother’s placenta, called chorioamnionitis, which causes fever, inflammation, and abnormally high heart rates in the unborn child.

"Our study revealed the cause of brain injury in infants is not as simplistic as initial studies indicated," said Perlman, also professor of obstetrics and gynecology, and anesthesiology and pain management. "These findings bring us a small step closer to understanding how the brain is injured and could eventually lead to new strategies for controlling infection and, more importantly, for preventing brain injury."

Earlier studies have pointed to lack of oxygen as the primary cause for neonatal brain injuries, including cerebral palsy. Brain injury during the perinatal period is one of the most common causes of severe, long-term neurologic deficit in infants and children. Each year, one in 1,000 babies is born with brain injury in the United States - about 4,000 annually.

The UT Southwestern researchers studied 61 full-term infants who were admitted to the neonatal intensive care unit at Parkland Memorial Hospital over a two-year period between July 1999 and December 2001. They examined the babies’ umbilical cord blood for infection and also conducted extensive neurological examinations twice in the first 24 hours of life.

"We discovered a significant correlation between the increased elevation of inflammation in the mother’s placenta and a reduction in neurological function in infants," Perlman said. "This is the first time such a relationship has been established."

By measuring specific inflammation markers in cord blood at birth and then again at 12 to 14 hours of age, researchers discovered infants with higher levels were "floppy," or had poor muscle tone.

"The five infants with the highest level of biomarkers either had a brain dysfunction known as encephalopathy or seizures," said Dr. Octavio Ramilo, study collaborator and associate professor of pediatrics and microbiology.

Brain injuries in newborns usually result in weakness or paralysis, mental retardation and/or seizures. About half of the children suffering from brain injuries must use braces, walkers, or wheelchairs as they get older.

Other UT Southwestern contributors to the study were Dr. Abbot Laptook, professor of pediatrics, and obstetrics and gynecology; and Dr. Hasan Jafri, assistant professor of pediatrics. Dr. Lina Shalak, the principal author of the study, was a fellow in neonatal intensive care at UT Southwestern at the time of the study and is currently a pediatric resident at Children’s Medical Center of Dallas.

Barbara Bedrick | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>