Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medics demonstrate treating disaster victims via satellite

12.11.2002



In reality, Ulm was the site of a full-scale trial of the new DELTASS (Disaster Emergency Logistics Telemedicine Advanced Satellites System) system, developed by a team lead by CNES for the European Space Agency (ESA).

DELTASS uses both geostationary and low earth orbit communication satellites enabling `top-down` management of emergency workers dispersed across a disaster zone, as well as letting medical experts located hundreds of miles away carry out on-the-spot diagnoses of casualties.


Such a fail-safe communication system for emergency telemedicine greatly multiplies the effectiveness of rescue workers within the affected area, especially as existing communications networks might not have survived.

"A major accident does as much invisible as visible harm," said Francesco Feliciani, DELTASS Project Manager at the European Space Agency. "Apart from the damage to terrestrial communications infrastructure done by the likes of an earthquake or floods, the first thing that becomes unavailable is the cellular network, which quickly gets overloaded. We saw this in the Toulouse chemical factory explosion last year."

Using DELTASS, search and rescue workers entering a disaster area to identify casualties carry PDAs and satellite phones to transmit details of the victims, opening `electronic patient forms` that stay with casualties throughout their treatment process and can be progressively updated.

First aid and ambulance teams are equipped with Portable Telemedicine Workstations for two-way communication with medical experts at a nearby Medical Field Hospital. Patient data such as ECGs and vital signs can be transmitted along with still images of injuries.

And at the hub of the DELTASS system is this Medical Field Hospital, set up within the disaster area. It is from here that mobile teams` activities are co-ordinated, patients are gathered, treated and their data tracked, and decisions are made about evacuating them elsewhere.

Broadband communication links enhances patient treatment, enabling videoconferencing with hospital staff in another country as well as telediagnosis techniques such as ultrasound.

Francesco Feliciani explained: "Most of all DELTASS allows us to `follow` each patient from his first contact with the search and rescue team through the quite complex chain of events that characterises the diagnostic and therapeutic intervention, distributed over time and space."

During the DELTASS baptism of fire, a Mobile Field Hospital was placed in Ulm along with three search and rescue teams, a mobile ambulance and a Portable Telemedicine Workstation.

The trial proved a great success, with several actors playing ‘victims’, relayed by ambulance to the Mobile Field Hospital. A live teleconsultation link was established with a hospital in Berlin, standing in as a second opinion reference hospital.


The DELTASS project commenced in July 2001. ESA worked on it with a number of partners including CNES and the French space medicine institute MEDES.

"DELTASS is an integrated solution where several hardware and software elements are used together" Francesco Feliciani said. "The real challenge was adapting and combining these elements to create a coherent set-up enabling emergency telemedicine.

"Now, following this demonstration, we are negotiating with the DELTASS team to launch a co-funded project to bring it to a real utilisation phase, to be operated by real users for actual emergency cases. We will hear more about this system in coming months!"

Dominique Detain | alfa
Further information:
http://www.esa.int

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>