Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic Variant Protects People Against Malaria


An international team of scientists has discovered a novel genetic trait that protects its carriers against the deadliest forms of malaria, while people without the trait are more likely to succumb to its fatal consequences.

This trait -- a mutation or “polymorphism” in the NOS2 gene -- controls the production of nitric oxide, a small chemical that can kill parasites and prevent malaria disease. Results of their study are published in the Nov. 9, 2002, issue of The Lancet.

The genetic variant explains why some people with malaria have only mild symptoms and recover fully, while others develop severe disease that may progress to death, said researchers from the University of Utah, the Durham Veterans Affairs (VA) Medical Center, Duke University Medical Center, the U.S. Centers for Disease Control and Prevention, Tanzania and Kenya.

“Malaria is a worldwide epidemic, affecting twice the population of the United States every year,” said Brice Weinberg, M.D., professor of medicine at the Durham VA and Duke University Medical Centers and principal investigator on the study. “Drug resistance to malaria is rampant, so our ability to artificially duplicate the benefits of this genetic trait would be enormous.”

People with the NOS2 gene variant make higher levels of nitric oxide, and the nitric oxide protects them from the extensive tissue and brain damage normally caused by the malaria parasite, said Dr. Maurine Hobbs, lead author and research assistant professor of internal medicine and human genetics at the University of Utah.

The team’s ultimate goal is to develop a simple treatment that boosts levels of nitric oxide to treat and prevent malaria, a prospect that the researchers say is well within their grasp.

Nitric oxide works by reducing the malaria parasites’ ability to multiply in liver and blood cells, preventing infected red blood cells from adhering to the lining of blood vessels, and decreasing the production of inflammatory chemicals (cytokines) that exacerbate the disease. Thus, it reduces the most deadly effects of malaria, which target the blood and vital organs such as the brain, said Dr. Nick Anstey, associate professor of medicine at the Menzies School for Health Research in Darwin, Australia.

While excessive nitric oxide can be harmful and causes inflammation in diseases such as arthritis, Anstey said that nitric oxide can also be beneficial by protecting against infections and preventing damage to cells and organs.

“Nitric oxide can be extremely useful when it is produced by the right cells, at the right levels, and at the right time,” said Anstey. Interestingly, he noted, the NOS2 gene variant does not prevent malarial infection; it simply renders the malaria parasite less harmful to bodily systems.

In fact, the NOS2 gene variant confers such overwhelming protection that Tanzanian carriers have an 88 percent lower risk of becoming ill with malaria than those without the trait, the study showed. In Kenya, its carriers have a 75 percent lower rate of developing severe malarial anemia. The two groups of patients consisted of 1,291 children who lived in highly mosquito- and malaria-infested areas of the two countries. The researchers analyzed blood and urine samples to demonstrate that people with the NOS2 polymorphism had higher levels of nitric oxide.

Weinberg said they believe that evolution has favored this protective mechanism for individuals who are most often exposed to malaria. Not surprisingly, then, Caucasians do not possess this genetic mutation, so they are at much higher risk for severe malaria. While malaria is seemingly a remote possibility in the heartland of America, the disease was once prevalent in the parts of the U.S. It was virtually eliminated by the 1940s through better mosquito control and improved living conditions, yet the disease periodically emerges in the U.S., even today.

Only about 1,200 malaria cases are reported in the U.S. yearly, and it is unlikely to ever reach epidemic proportions here, but malaria is rampant in much of Africa and Asia, infecting about 500 million people each year. Despite some advances in treatment, malaria continues to be deadly -- a malaria death occurs every 30 seconds worldwide.

Many of those infected with the malaria parasite may have no symptoms or only mild flu-like symptoms. However, others progress to more severe disease with extreme fatigue, fever, and chills. A third of these victims with severe disease -- mostly children and pregnant women -- succumb to more deadly consequences, either cerebral malaria or severe anemia.

In cerebral malaria, red blood cells containing the malaria parasite stick to the lining of blood vessels, causing blockages and decreasing blood supply to parts of the brain. Up to one-third of children with cerebral malaria die despite treatment. In severe anemia, parasites gobble up hemoglobin, destroy red blood cells and block blood formation until the patient is beyond rescue. Even with the best of current treatments, more than 1 million people die each year of severe malaria. The newly identified NOS2 gene polymorphism -- called C-1173T NOS2 -- protects against both kinds of malaria.

In addition to investigators from Duke, Utah, Australia and the CDC, researchers from the Hubert Kairuki Memorial University in Tanzania, and the World Health Organization in Switzerland contributed to the work. The research was supported by the National Institutes of Health, the U.S. Veterans Affairs, the U.S. Agency for International Development and the U.S. Centers for Disease Control and Prevention.

Rebecca Levine | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>