Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal stem cell transplants may open door to organ transplants, treating genetic diseases

07.11.2002


In a finding that could open the door to future treatments for many genetic diseases such as sickle cell anemia and muscular dystrophy, researchers have produced high levels of transplanted, healthy stem cells in mice, while sharply reducing a hazardous side effect of cell and organ transplants called graft-versus-host disease.


By combining prenatal transplants of blood-forming stem cells with manipulations of blood cells after birth, researchers at The Children’s Hospital of Philadelphia achieved immune tolerance in mice, allowing donor cells to multiply without toxic side effects. The studies appear in related articles in the August and September issues of Blood.

The finding could greatly broaden the use of cell and organ transplants for genetic diseases detected before birth, such as leukemia, sickle cell disease, muscular dystrophy, and some kidney and liver disorders.

"Recent developments in genetic knowledge and technology are converging to make it likely that within a decade, nearly all human genetic diseases will be diagnosed before birth," says Alan W. Flake, M.D., director of the Children’s Institute for Surgical Science at The Children’s Hospital of Philadelphia, and senior author of both articles. "Our research may greatly expand our ability to use prenatal interventions to help the body safely tolerate treatments for genetic diseases."



Dr. Flake’s team used a prenatal procedure called in utero hematopoietic stem cell transplantation (IUHSCT). Hematopoietic stem cells develop into red blood cells, white blood cells and a variety of immune cells. The stem cells used in these studies were taken from the bone marrow of adult mice, not from human embryos.

As a disease treatment, prenatal stem cell transplants have faced a major barrier in that they have been unable to achieve high levels of engraftment – the number of donor stem cells usually does not grow large enough to overcome the effect of diseased cells. An exception to this limitation is diseases in which donor cells have a normal advantage over the transplant recipient’s cells. For instance, Dr. Flake was able to cure a child of a rare immune disease, X-linked severe combined immunodeficiency disorder (X-SCID), by using a prenatal stem cell transplant in 1996 that rebuilt his immune system.

Dr. Flake’s current studies potentially extend prenatal stem cell transplants to a broader range of diseases, by manipulating conditions to create a competitive advantage for donor cells over host cells. The IUHSCT procedure first makes the recipient’s immune system tolerant of low levels of donor cells, and then a second, nontoxic procedure after birth provides a competitive advantage for the transplanted donor cells, allowing them to multiply.

"Performing the stem cell transplant prenatally relies on features of the fetal immune system that are more receptive to transplantation," said Dr. Flake. "For instance, the immaturity of the fetal immune system makes it less able to mount an immune response against the transplanted cells." Paradoxically, the technique also relies on a strength of the fetal immune system: its healthy thymus, a gland that declines in function after puberty. The fetal thymus produces T-regulatory cells, which help to reduce graft-versus-host disease. In that disease, a life-threatening complication of cell and organ transplants, donor cells attack the patient’s tissues.

The second, postnatal step of the treatment compromises host blood cells and allows the donor cells to engraft themselves in the recipient’s bone marrow and bloodstream. Because the prenatal transplant has made the host animal tolerant of donor cells, the postnatal procedure can be less toxic than conventional treatments that use harsh chemotherapy drugs or high-dose radiation to wipe out the host’s existing immune system.

In one study, Dr. Flake used donor lymphocyte infusion (DLI) as the postnatal treatment. Currently used against some leukemias, DLI supplies lymphocytes, donated immune cells that weaken or kill host blood cells. In the other study, the postnatal treatment was low-dose full-body irradiation followed by bone marrow transplantation. Graft-versus-host disease was minimal in the DLI study, killing only one mouse out of 56, and did not occur at all in the other study.

The procedures achieved complete or near-complete chimerism – meaning that all, or nearly all, of the animal’s blood cells were derived from the donor stem cells, even though the donor animals were not matched with the recipients. "This was the first time that complete chimerism was achieved across mismatched donors and recipients without using toxic therapy," said Dr. Flake. "If this strategy can be made to work in people, there are broad implications for treating human disease."

Potential applications to disease treatment

"This approach could potentially target any diseases that are now treatable with bone marrow transplants," adds Dr. Flake. "These include blood cell diseases such as leukemias, thalassemia and sickle cell disease, as well as many inherited immunodeficiency disorders."

Beyond that, he added, the technique might also treat muscular dystrophy, an incurable genetic disease that impairs muscle development. In previous research, Dr. Flake’s team showed that stem cells transplanted in utero can develop into healthy muscle cells in mice with muscular dystrophy.

Organ transplant recipients might also benefit from the technique’s ability to make a patient’s immune system tolerant of the donated organ. "If prenatal screening predicts that a fetus would have kidney or liver failure, the prenatal stem cell transplant could prepare the immune system for a future transplant," says Dr. Flake. "A tolerized immune system would better accept an organ transplant from an unmatched donor."

Although prenatal screening is not yet widespread for many genetic diseases, he adds, currently emerging technologies will make it feasible to diagnose nearly all genetic diseases early in gestation within the next 10 years. "The combination of data from the Human Genome Project, improvements in molecular diagnoses, gene chip technology, and the ability to do molecular diagnoses of fetal cells or fetal DNA within the mother’s blood, all support early gestational diagnosis of genetic disease," says Dr. Flake.

Dr. Flake cautions that the clinical applications may be years away, but based on these results, he will further investigate stem cell transplantation in mice and then in larger animals, with the goal of translating the approach to treatments for people.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>