Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating pneumonia by a nose

06.11.2002


Electronic nose detects pneumonia in critically ill patients



According to a team of researchers from University of Pennsylvania School of Medicine, an electronic nose - a relatively new version of a sensor previously used in the food, wine and perfume industries - can quickly and accurately diagnose pneumonia in critically ill, mechanically ventilated patients. The results will be presented at the CHEST 2002 Annual Meeting Tuesday, November 5th in San Diago.

"We wanted to further explore using the e-nose after the exciting results of an initial study we conducted back in 1997 with only 20 patients," said C. William Hanson, III, MD, associate professor of Anesthesia, Surgery and Internal Medicine, and lead author of the study. When it comes to lower pulmonary infections, especially in critically ill patients, time is of the essence for disease control. "Rather than waiting two to three days for the results of a bacterial culture or relying on chest X-rays which aren’t always accurate, the e-nose can give us a head start toward a proper diagnoses. We could avoid over-prescribing powerful antibiotics which are usually given to patients while we’re waiting for their test results, even though we don’t know if they actually need them," adds Hanson.


In the current study, 415 mechanically ventilated, critical care patients were screened for the presence of ventilator associated pneumonia (VAP) using a clinical pneumonia score (CPIS). Patients with high CPIS scores were enrolled in the study as well as control patients who had no evidence of pneumonia. An exhaled breath sample was taken from each patient directly from the expiratory limb of the ventilator circuit into an electronic nose made by Cyrano Sciences, Pasadena, CA. This differs from the original study where breath samples were collected in plastic bags from the ventilators of intubated intensive care patients and then fed into a different electronic nose.

The e-nose contains an array of sensors consisting of carbon-black/polymer composites. The patient’s exhaled breath gas was passed over these sensors which interact with volatile molecules to produce unique patterns that are displayed in two-dimensional "maps," or dot patterns on a computer screen. The results were analyzed using pattern recognition algorithms and assessed for a correlation between the actual CPIS scores and the one predicted by the nose. Hanson and his colleagues found that the nose made clear distinctions between the patients who were infected and those who were not.

"The data show good correlation between the actual scores and those predicted by the data from the e-nose sensor," said Hanson. "Furthermore, this study suggests that the commercial electronic nose, as is, would be reasonably successful in predicting ventilator associated pneumonia. It would be even more suited to the task if the sensor array could be customized." Preliminary data also suggests that the e-nose may be able to distinguish between pneumonias caused by different bacterial infections. Cyrano Sciences, Inc., donated a "Cyranose" electronic nose for use in this study.


###
Editor’s Note: Dr. Hanson does not have any financial ties with Cyrano Sciences, Inc., and will be available at the CHEST 2002 Annual Meeting and by phone for comment.

Olivia Fermano | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>