Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating pneumonia by a nose

06.11.2002


Electronic nose detects pneumonia in critically ill patients



According to a team of researchers from University of Pennsylvania School of Medicine, an electronic nose - a relatively new version of a sensor previously used in the food, wine and perfume industries - can quickly and accurately diagnose pneumonia in critically ill, mechanically ventilated patients. The results will be presented at the CHEST 2002 Annual Meeting Tuesday, November 5th in San Diago.

"We wanted to further explore using the e-nose after the exciting results of an initial study we conducted back in 1997 with only 20 patients," said C. William Hanson, III, MD, associate professor of Anesthesia, Surgery and Internal Medicine, and lead author of the study. When it comes to lower pulmonary infections, especially in critically ill patients, time is of the essence for disease control. "Rather than waiting two to three days for the results of a bacterial culture or relying on chest X-rays which aren’t always accurate, the e-nose can give us a head start toward a proper diagnoses. We could avoid over-prescribing powerful antibiotics which are usually given to patients while we’re waiting for their test results, even though we don’t know if they actually need them," adds Hanson.


In the current study, 415 mechanically ventilated, critical care patients were screened for the presence of ventilator associated pneumonia (VAP) using a clinical pneumonia score (CPIS). Patients with high CPIS scores were enrolled in the study as well as control patients who had no evidence of pneumonia. An exhaled breath sample was taken from each patient directly from the expiratory limb of the ventilator circuit into an electronic nose made by Cyrano Sciences, Pasadena, CA. This differs from the original study where breath samples were collected in plastic bags from the ventilators of intubated intensive care patients and then fed into a different electronic nose.

The e-nose contains an array of sensors consisting of carbon-black/polymer composites. The patient’s exhaled breath gas was passed over these sensors which interact with volatile molecules to produce unique patterns that are displayed in two-dimensional "maps," or dot patterns on a computer screen. The results were analyzed using pattern recognition algorithms and assessed for a correlation between the actual CPIS scores and the one predicted by the nose. Hanson and his colleagues found that the nose made clear distinctions between the patients who were infected and those who were not.

"The data show good correlation between the actual scores and those predicted by the data from the e-nose sensor," said Hanson. "Furthermore, this study suggests that the commercial electronic nose, as is, would be reasonably successful in predicting ventilator associated pneumonia. It would be even more suited to the task if the sensor array could be customized." Preliminary data also suggests that the e-nose may be able to distinguish between pneumonias caused by different bacterial infections. Cyrano Sciences, Inc., donated a "Cyranose" electronic nose for use in this study.


###
Editor’s Note: Dr. Hanson does not have any financial ties with Cyrano Sciences, Inc., and will be available at the CHEST 2002 Annual Meeting and by phone for comment.

Olivia Fermano | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>