Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beating pneumonia by a nose

06.11.2002


Electronic nose detects pneumonia in critically ill patients



According to a team of researchers from University of Pennsylvania School of Medicine, an electronic nose - a relatively new version of a sensor previously used in the food, wine and perfume industries - can quickly and accurately diagnose pneumonia in critically ill, mechanically ventilated patients. The results will be presented at the CHEST 2002 Annual Meeting Tuesday, November 5th in San Diago.

"We wanted to further explore using the e-nose after the exciting results of an initial study we conducted back in 1997 with only 20 patients," said C. William Hanson, III, MD, associate professor of Anesthesia, Surgery and Internal Medicine, and lead author of the study. When it comes to lower pulmonary infections, especially in critically ill patients, time is of the essence for disease control. "Rather than waiting two to three days for the results of a bacterial culture or relying on chest X-rays which aren’t always accurate, the e-nose can give us a head start toward a proper diagnoses. We could avoid over-prescribing powerful antibiotics which are usually given to patients while we’re waiting for their test results, even though we don’t know if they actually need them," adds Hanson.


In the current study, 415 mechanically ventilated, critical care patients were screened for the presence of ventilator associated pneumonia (VAP) using a clinical pneumonia score (CPIS). Patients with high CPIS scores were enrolled in the study as well as control patients who had no evidence of pneumonia. An exhaled breath sample was taken from each patient directly from the expiratory limb of the ventilator circuit into an electronic nose made by Cyrano Sciences, Pasadena, CA. This differs from the original study where breath samples were collected in plastic bags from the ventilators of intubated intensive care patients and then fed into a different electronic nose.

The e-nose contains an array of sensors consisting of carbon-black/polymer composites. The patient’s exhaled breath gas was passed over these sensors which interact with volatile molecules to produce unique patterns that are displayed in two-dimensional "maps," or dot patterns on a computer screen. The results were analyzed using pattern recognition algorithms and assessed for a correlation between the actual CPIS scores and the one predicted by the nose. Hanson and his colleagues found that the nose made clear distinctions between the patients who were infected and those who were not.

"The data show good correlation between the actual scores and those predicted by the data from the e-nose sensor," said Hanson. "Furthermore, this study suggests that the commercial electronic nose, as is, would be reasonably successful in predicting ventilator associated pneumonia. It would be even more suited to the task if the sensor array could be customized." Preliminary data also suggests that the e-nose may be able to distinguish between pneumonias caused by different bacterial infections. Cyrano Sciences, Inc., donated a "Cyranose" electronic nose for use in this study.


###
Editor’s Note: Dr. Hanson does not have any financial ties with Cyrano Sciences, Inc., and will be available at the CHEST 2002 Annual Meeting and by phone for comment.

Olivia Fermano | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>