Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Estrogen linked to more efficient regulation of a woman’s heartbeat

05.11.2002


Age is the ’equalizer,’ according to a study that provides new insights into why women live longer than men



Men die earlier than women. This fact leads scientists and medical researchers to conclude that gender and age are two basic factors continuously affecting body functions, disease categories and even life expectancy. Previous research has determined that gender influences brain structure and functions; however, in considering the cardiac pacemaker, there is still debate as to whether heart rate dynamics differ between women and men.

Electrocardiogram (ECG) findings offer interesting arguments for both sides of the issue. There is a similarity in the sexes regarding the mean and standard deviation of the R-R interval portion of electrocardiogram (intervals between positive deflection of the QRS complex, which involves the depolarization of ventricular cardiac cells). On the other hand, women have been reported to have lower, similar, and higher high-frequency power (HF) and similar low-frequency power (LF) of heart rate variability (HRV). (HRV is a strong predictor of mortality adversely affected by such problems as anxiety, depression, and trauma.)


A team of researchers has speculated whether confusing findings in heart activity of the sexes could be attributed to the nonlinear characteristics of pacemaker activity, which may cause large variations when analyzed by traditional linear methods. Such variations might lead to severe interference if there are gender differences in the discharge from the heart’s natural pacemaker, the sinus (SA) node. Accordingly, they set out to determine whether the complexity or chaos of cardiac pacemaker activity differs between women and men. Because aging may be a major determinate of heart rate dynamics, the researchers systemically studied the effect of aging on nonlinear properties and on gender-related differences. The results were then compared with standard frequency-domain methods to measure the nervous system’s parasympathetic and sympathetic regulation of heart rate.

The authors of "Sexual Dimorphism in the Complexity of Cardiac Pacemaker Activity," are Terry B. J. Kuo from Tzu Chi University and Tzu Chi Buddhist General Hospital, Hualien, Taiwan, and Cheryl C. H. Yang, also from Tzu Chi University. Their findings appeared in the October 2002 edition of the American Journal of Physiology--Heart and Circulatory Physiology.

Methodology

The study entailed the participation of 480 volunteers (240 women and 240 men), age 40–79, similar to overall distribution of males and females. They were distributed into eight groupings based on five-year age intervals, with each age stratum containing 30 women and 30 men. Subjects excluded had cardiovascular fluctuations: hypotension, hypertension, diabetic neuropathy, an implanted cardiac pacemaker, frequent occurrence of atrial fibrillation, premature atrial or ventricular contractions, or other forms of arrhythmia. Nonlinear analysis of short-term resting R-R intervals was performed using the correlation dimension (CD), approximate entropy (ApEn), and largest Lyapunov exponent (LLE). Evidence of nonlinear structure was obtained by the surrogate data test. CD, ApEn, and LLE were negatively correlated with age.

Results

The short-term heart rate variability analyses reveal that a woman’s heart rate is characterized by a higher CD, ApEn, and LLE when compared with that of a man in the middle age, indicating a more complex signal broadcasting from a woman’s cardiac pacemaker.

In assessing the brain, a more complex neural signal is always accompanied with a more involved neural network. On the other hand, a very simple firing pattern can only be observed in an isolated neuron. Thus the higher complexity of women’s heart rate dynamics implies that the female heart is modulated more comprehensively by the autonomic nervous system (ANS), especially the rapid vagal influence, although such modulation is not strong enough to produce an evident change in the mean and standard deviation of R-R intervals. With the effect of age, previous studies have revealed that aging is accompanied with a decrease of complexity in either cardiac pacemaker activity or midbrain neural activity. Older subjects, regardless of gender, had a lower CD, ApEn, and LLE, indicating a lower degree of neural modulation to the cardiac pacemaker.

The researchers conclude that this lower complexity in the elderly may be due to a decrease in the ANS potency resulting from the normal aging process. The higher complexity of heart rate dynamics observed in women before the age of menopause may be related to the lower cardiac mortality and longer life expectancy of women. Previous studies regarding the nonlinear analysis of HR dynamics chiefly focused on its capability to discriminate pathological states or senile changes from normal conditions. Because illness and aging may lead to a prominent change in ANS function, which in turn leads to a prominent change in HR dynamics, such alterations can usually be detected by traditional linear methods.

Conclusions

In almost every country, women have a longer life expectancy than men, generally attributed to gender-related differences in cardiovascular function. The exact mechanism underlying these differences remains unclear; however, the data in this study indicate that changes in the nonlinear properties may reflect effects of gender and aging on cardiac parasympathetic regulation. The gender-related difference in autonomic regulation function is key: women before menopause have a lower risk of heart diseases than do men. The "cardioprotective" effect of estrogen has been proposed for this trend but the linkage between the sex hormone and the heart is ambiguous. Because a potentiated vagal function may protect the heart from tachyarrhythmias after ischemic heart disease and decrease the mortality rate, the dominance of vagal function in middle-aged women may produce a protective effect against lethal tachyarrhythmias.

The study revealed 71 percent of women were postmenopausal; the mean age of menopause was 47.7, and only six percent of postmenopausal women received hormone replacement therapy. Thus the loss of gender-related differences in the nonlinear indexes after age 50 supports the hypothesis that estrogen has a facilitating effect on cardiac parasympathetic regulation as revealed by the nonlinear content of heart rate dynamics. Nonlinear analysis techniques may reveal new aspects of HR dynamics. Mechanisms underlying the effects of gender and aging on nonlinear properties of cardiac pacemaker activity and related clinical applications warrant further investigations. Because the algorithms may be directly incorporated into current HRV analysis protocols, CD, ApEn, and LLE have a high potential for studying gender-related differences in cardiac pacemaker activity and related autonomic regulation.


###
Source: October 2002 edition of the American Journal of Physiology--Heart and Circulatory Physiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | EurekAlert!

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>