Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic Hip Implants Provide Alternative for Younger Patients--Rush Testing Material That May Be More Durable Than Plastic

05.11.2002


Indiana resident Luke Pascale runs two pizza restaurants and had worked out three times a week. He also enjoyed long bike rides with his wife, but last year, the pain in his hip became so severe he couldn’t stay on a bike for more than five minutes.



"I’m very active so the thought of having hip surgery was not pleasant," said the 53-year-old father of four from St. John, Ind.

Instead of receiving the traditional hip replacement surgery, which uses a metal ball bearing in a polyethylene and titanium socket to ensure strength and stability, Pascale chose to enroll in a new study using a ceramic-to-ceramic hip implant.


"Metal-to-polyethelene hip transplants have done yoeman’s work for most patients, but after about 15 years, the metal begins to wear the plastic down, creating in some patients, osteolysis in the hip, which occurs when particles break off from the implant," said Dr. Steven Gitelis, orthopedic surgeon at Rush. He is one of the few orthopedic surgeons in Chicago testing the ceramic implant as part of a research protocol that may lead to more extensive use of the ceramic hip implants. "With more people living longer, the expectation is that hip replacements should last longer, too," he added.

To address this durability and wear issue, researchers and manufacturers began testing a ceramic-to-ceramic hip implant in 1997. Results from wear testing and examinations post mortem have suggested that ceramic hips are more durable than metal on metal hip replacements and significantly more durable that metal on polyethelene.

A large-scale clinical trial was recently completed of 1,196 total hip replacements performed between 1997 and 2002. Of these, 405 hips were followed for a minimum of 24 months. The results showed no postoperative bearing fractures and no particles flaking off that might cause complications. Also, researchers performed wear studies on ceramic hip materials with a walking and motion simulator that showed ceramic hips are 4,000 times more durable than metal on polyethylene.

The ceramic implant is not approved by the Food and Drug Administration but Gitelis believes that once it is approved, patients will have more choices of materials.

"If I’m treating a patient in his 80s, I would probably still give them the metal to polyethylene implant," Gitelis said. "But, if I have younger patient who requires a total hip replacement, I would recommend the ceramic material as it gives the patient the best chance to avoid wear and adverse effects over the long term."

Some researchers also believe that the bacteria Staphylococcus epidermis adheres more strongly to polyethylene than ceramic, though Gitelis indicated that had not yet been proven scientifically. Use of the new ceramic material will not require any new technique nor will it force surgeons to use a different socket as the new ceramic bearing is designed to fit into existing socket.

Pascale had his surgery on June 11 and now reports little discomfort and is happy he chose ceramic over traditional metal to polyethelene.


Contact: Chris Martin (href=mailto:cmartin@rush.edu>v ) or
John Pontarelli (href=mailto:jpontare@rush.edu>jpontare@rush.edua)
Phone: (312) 942-7820 or 942-5579

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu/servlets/Medrel/ShowContentServlet1?id=349&cid=74

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>