Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic Hip Implants Provide Alternative for Younger Patients--Rush Testing Material That May Be More Durable Than Plastic

05.11.2002


Indiana resident Luke Pascale runs two pizza restaurants and had worked out three times a week. He also enjoyed long bike rides with his wife, but last year, the pain in his hip became so severe he couldn’t stay on a bike for more than five minutes.



"I’m very active so the thought of having hip surgery was not pleasant," said the 53-year-old father of four from St. John, Ind.

Instead of receiving the traditional hip replacement surgery, which uses a metal ball bearing in a polyethylene and titanium socket to ensure strength and stability, Pascale chose to enroll in a new study using a ceramic-to-ceramic hip implant.


"Metal-to-polyethelene hip transplants have done yoeman’s work for most patients, but after about 15 years, the metal begins to wear the plastic down, creating in some patients, osteolysis in the hip, which occurs when particles break off from the implant," said Dr. Steven Gitelis, orthopedic surgeon at Rush. He is one of the few orthopedic surgeons in Chicago testing the ceramic implant as part of a research protocol that may lead to more extensive use of the ceramic hip implants. "With more people living longer, the expectation is that hip replacements should last longer, too," he added.

To address this durability and wear issue, researchers and manufacturers began testing a ceramic-to-ceramic hip implant in 1997. Results from wear testing and examinations post mortem have suggested that ceramic hips are more durable than metal on metal hip replacements and significantly more durable that metal on polyethelene.

A large-scale clinical trial was recently completed of 1,196 total hip replacements performed between 1997 and 2002. Of these, 405 hips were followed for a minimum of 24 months. The results showed no postoperative bearing fractures and no particles flaking off that might cause complications. Also, researchers performed wear studies on ceramic hip materials with a walking and motion simulator that showed ceramic hips are 4,000 times more durable than metal on polyethylene.

The ceramic implant is not approved by the Food and Drug Administration but Gitelis believes that once it is approved, patients will have more choices of materials.

"If I’m treating a patient in his 80s, I would probably still give them the metal to polyethylene implant," Gitelis said. "But, if I have younger patient who requires a total hip replacement, I would recommend the ceramic material as it gives the patient the best chance to avoid wear and adverse effects over the long term."

Some researchers also believe that the bacteria Staphylococcus epidermis adheres more strongly to polyethylene than ceramic, though Gitelis indicated that had not yet been proven scientifically. Use of the new ceramic material will not require any new technique nor will it force surgeons to use a different socket as the new ceramic bearing is designed to fit into existing socket.

Pascale had his surgery on June 11 and now reports little discomfort and is happy he chose ceramic over traditional metal to polyethelene.


Contact: Chris Martin (href=mailto:cmartin@rush.edu>v ) or
John Pontarelli (href=mailto:jpontare@rush.edu>jpontare@rush.edua)
Phone: (312) 942-7820 or 942-5579

Chris Martin | EurekAlert!
Further information:
http://www.rush.edu/servlets/Medrel/ShowContentServlet1?id=349&cid=74

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>