Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firefly light illuminates course of herpes infection in mice

05.11.2002


Researchers are using a herpes virus that produces a firefly enzyme to illuminate the virus’s course of infection in mice and to help monitor the infection’s response to therapy. The work is published by scientists at Washington University School of Medicine in St. Louis in the December issue of the Journal of Virology.



"This study demonstrates the feasibility of monitoring microbial infections in living animals in real time," says study leader David A. Leib, Ph.D., associate professor of ophthalmology and visual sciences and of molecular microbiology. "The technique enables us to follow an infection over time as it progresses and resolves, and we can do this repeatedly using the same animal."

This technology may solve several problems in studying herpes infections and the genes that control them. To investigate the progress of an infection over a course of days, for example, researchers normally must sacrifice infected mice each day and analyze their tissues to determine the level of virus present. The process is further complicated by the fact that individual mice respond differently to infection.


"One must make a leap of faith that a mouse sacrificed on day three of an infection is responding to the virus in the same way as a mouse sacrificed on day two of the infection," says Leib.

This new technology, an imaging method known as in vivo bioluminescence, enables investigators to track changes in the viral population in the same animal day after day. The device is located in the Molecular Imaging Center at the University’s Mallinckrodt Institute of Radiology.

"This technology can be used to explore questions about this virus that are possible only by studying entire living animals over time," says Gary D. Luker, M.D., an assistant professor of radiology with the Molecular Imaging Center and first author of the paper.

"This is an excellent example of the unique information and new collaborations that are generated when we examine fundamental biological processes with molecular imaging tools," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the Molecular Imaging Center.

The investigators first added a gene for luciferase, an enzyme produced by fireflies, to a strain of herpes simplex type 1 virus. After determining that the modified virus behaves in cells like the normal virus, they injected the modified virus into several locations in mice, including the brain and abdominal cavity.

Daily for nine days, the mice were injected with luciferin, a compound also produced by fireflies that emits light when exposed to luciferase. They then were anesthetized, placed in a light-free box and photographed using a charged-coupled device, or CCD camera. The camera captures light emitted through the tissues of the mouse by the actively replicating virus. The image produced by the camera shows the location and amount of virus in a mouse as areas of color, ranging from blue (low levels) to red (high levels), superimposed on a photograph of the anesthetized animal. Light produced by the luciferase-luciferin reaction is known as bioluminescence because it is generated by biological chemicals.

This imaging method enabled the investigators to monitor the infection as it spread and receded over nine days. In a second experiment, mice infected with the modified virus were treated with the antiviral drug valacyclovir. The investigators found that decreases in bioluminescence correlated with the decline in the amount of virus present.

The method works in part because bioluminescence produced by fireflies contains a significant amount of red light, which penetrates tissues more effectively than other wavelengths of light. This effect can be seen by shining a flashlight through a finger; it is red light that penetrates the finger.

The investigators next will use the imaging technique to study the course of herpes infection in mice lacking certain elements of the immune system to determine how different elements of the immune system influence the course of an infection.


Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA. Noninvasive bioluminescence imaging of Herpes simplex virus type 1 infection and therapy in living mice. Journal of Virology, 76(23), 12149-12161, Dec. 2002.

Funding from the National Institutes of Health, Research to Prevent Blindness and a Robert E. McCormick Scholarship supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>