Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firefly light illuminates course of herpes infection in mice

05.11.2002


Researchers are using a herpes virus that produces a firefly enzyme to illuminate the virus’s course of infection in mice and to help monitor the infection’s response to therapy. The work is published by scientists at Washington University School of Medicine in St. Louis in the December issue of the Journal of Virology.



"This study demonstrates the feasibility of monitoring microbial infections in living animals in real time," says study leader David A. Leib, Ph.D., associate professor of ophthalmology and visual sciences and of molecular microbiology. "The technique enables us to follow an infection over time as it progresses and resolves, and we can do this repeatedly using the same animal."

This technology may solve several problems in studying herpes infections and the genes that control them. To investigate the progress of an infection over a course of days, for example, researchers normally must sacrifice infected mice each day and analyze their tissues to determine the level of virus present. The process is further complicated by the fact that individual mice respond differently to infection.


"One must make a leap of faith that a mouse sacrificed on day three of an infection is responding to the virus in the same way as a mouse sacrificed on day two of the infection," says Leib.

This new technology, an imaging method known as in vivo bioluminescence, enables investigators to track changes in the viral population in the same animal day after day. The device is located in the Molecular Imaging Center at the University’s Mallinckrodt Institute of Radiology.

"This technology can be used to explore questions about this virus that are possible only by studying entire living animals over time," says Gary D. Luker, M.D., an assistant professor of radiology with the Molecular Imaging Center and first author of the paper.

"This is an excellent example of the unique information and new collaborations that are generated when we examine fundamental biological processes with molecular imaging tools," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the Molecular Imaging Center.

The investigators first added a gene for luciferase, an enzyme produced by fireflies, to a strain of herpes simplex type 1 virus. After determining that the modified virus behaves in cells like the normal virus, they injected the modified virus into several locations in mice, including the brain and abdominal cavity.

Daily for nine days, the mice were injected with luciferin, a compound also produced by fireflies that emits light when exposed to luciferase. They then were anesthetized, placed in a light-free box and photographed using a charged-coupled device, or CCD camera. The camera captures light emitted through the tissues of the mouse by the actively replicating virus. The image produced by the camera shows the location and amount of virus in a mouse as areas of color, ranging from blue (low levels) to red (high levels), superimposed on a photograph of the anesthetized animal. Light produced by the luciferase-luciferin reaction is known as bioluminescence because it is generated by biological chemicals.

This imaging method enabled the investigators to monitor the infection as it spread and receded over nine days. In a second experiment, mice infected with the modified virus were treated with the antiviral drug valacyclovir. The investigators found that decreases in bioluminescence correlated with the decline in the amount of virus present.

The method works in part because bioluminescence produced by fireflies contains a significant amount of red light, which penetrates tissues more effectively than other wavelengths of light. This effect can be seen by shining a flashlight through a finger; it is red light that penetrates the finger.

The investigators next will use the imaging technique to study the course of herpes infection in mice lacking certain elements of the immune system to determine how different elements of the immune system influence the course of an infection.


Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA. Noninvasive bioluminescence imaging of Herpes simplex virus type 1 infection and therapy in living mice. Journal of Virology, 76(23), 12149-12161, Dec. 2002.

Funding from the National Institutes of Health, Research to Prevent Blindness and a Robert E. McCormick Scholarship supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>