Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How HIV outmaneuvers the immune system

05.11.2002


T cells and antibody-producing B cells carry out immune defense against specific pathogens such as viruses. Antibodies and T cell receptors are highly diverse molecules that can recognize millions of different molecules. Upon encounter of a foreign antigen (such as a molecule from the surface of a virus), T cells and B cells whose receptors match that particular antigen expand dramatically, providing the immune system with a large number of very specific defenders. After an attack is fought off, the overall numbers of specific T and B cells go down again, but a few of them become long-lived so-called "memory cells" that ensure a quick re-mobilization should the same type of attacker strike again.



T cells consist of two major groups: CD4-positive T helper cells (who help other immune cells in mounting an effective response) and CD8-positive killer T cells. HIV infects and destroys CD4-positive cells, leaving patients with a crippled immune system. Throughout the course of HIV disease, however, patients have high levels of HIV-specific killer T cells. Early after initial infection, these cells are able to effectively kill the virus and reduce viral load. On the other hand, during the later stage of disease killer T cells, while still present, seem no longer able to control the virus. In an article in the November 4 issue of the Journal of Clinical Investigation, Premlata Shankar and colleagues from the Center for Blood Research at Harvard Medical School suggest why this might be the case.

The researchers compared killer T cells from HIV infected asymptomic individuals with those from symptomatic AIDS patients. They examined the killer cells’ ability to eliminate target cells infected with laboratory strains of HIV on one hand, and with autologous virus (isolated from the patient) on the other. What they found is that killer T cells from asymptomatic individuals can recognize and kill both types of target cells. In contrast, the killer T cells from symptomatic patients, while still able to recognize and eliminate the laboratory strain targets, no longer killed target cells that were infected with their own, autologous, virus. This is likely due to the virus’ propensity to mutate and the in inability of the patient’s weakened immune system to keep up with the changing virus.


These results demonstrate that the high number of HIV-specific killer T cells found in AIDS patients are remnants of what used to be an effective response early after infection but no longer recognize the mutated autologous virus. Moreover, these findings reveal that conventional assays to measure killer T cell responses in HIV patients--which focus on responses to laboratory strains--do not accurately reflect but overestimate the response to the patient’s autologous virus.


CONTACT:
Premlata Shankar
Harvard Medical School
The Center for Blood Research
800 Huntington Avenue
Boston, MA 02115
USA
PHONE: 617-278-3476
FAX: 617-278-3403
E-mail: shankar@cbr.med.harvard.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>