Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How HIV outmaneuvers the immune system


T cells and antibody-producing B cells carry out immune defense against specific pathogens such as viruses. Antibodies and T cell receptors are highly diverse molecules that can recognize millions of different molecules. Upon encounter of a foreign antigen (such as a molecule from the surface of a virus), T cells and B cells whose receptors match that particular antigen expand dramatically, providing the immune system with a large number of very specific defenders. After an attack is fought off, the overall numbers of specific T and B cells go down again, but a few of them become long-lived so-called "memory cells" that ensure a quick re-mobilization should the same type of attacker strike again.

T cells consist of two major groups: CD4-positive T helper cells (who help other immune cells in mounting an effective response) and CD8-positive killer T cells. HIV infects and destroys CD4-positive cells, leaving patients with a crippled immune system. Throughout the course of HIV disease, however, patients have high levels of HIV-specific killer T cells. Early after initial infection, these cells are able to effectively kill the virus and reduce viral load. On the other hand, during the later stage of disease killer T cells, while still present, seem no longer able to control the virus. In an article in the November 4 issue of the Journal of Clinical Investigation, Premlata Shankar and colleagues from the Center for Blood Research at Harvard Medical School suggest why this might be the case.

The researchers compared killer T cells from HIV infected asymptomic individuals with those from symptomatic AIDS patients. They examined the killer cells’ ability to eliminate target cells infected with laboratory strains of HIV on one hand, and with autologous virus (isolated from the patient) on the other. What they found is that killer T cells from asymptomatic individuals can recognize and kill both types of target cells. In contrast, the killer T cells from symptomatic patients, while still able to recognize and eliminate the laboratory strain targets, no longer killed target cells that were infected with their own, autologous, virus. This is likely due to the virus’ propensity to mutate and the in inability of the patient’s weakened immune system to keep up with the changing virus.

These results demonstrate that the high number of HIV-specific killer T cells found in AIDS patients are remnants of what used to be an effective response early after infection but no longer recognize the mutated autologous virus. Moreover, these findings reveal that conventional assays to measure killer T cell responses in HIV patients--which focus on responses to laboratory strains--do not accurately reflect but overestimate the response to the patient’s autologous virus.

Premlata Shankar
Harvard Medical School
The Center for Blood Research
800 Huntington Avenue
Boston, MA 02115
PHONE: 617-278-3476
FAX: 617-278-3403

Brooke Grindlinger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>