Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How HIV outmaneuvers the immune system

05.11.2002


T cells and antibody-producing B cells carry out immune defense against specific pathogens such as viruses. Antibodies and T cell receptors are highly diverse molecules that can recognize millions of different molecules. Upon encounter of a foreign antigen (such as a molecule from the surface of a virus), T cells and B cells whose receptors match that particular antigen expand dramatically, providing the immune system with a large number of very specific defenders. After an attack is fought off, the overall numbers of specific T and B cells go down again, but a few of them become long-lived so-called "memory cells" that ensure a quick re-mobilization should the same type of attacker strike again.



T cells consist of two major groups: CD4-positive T helper cells (who help other immune cells in mounting an effective response) and CD8-positive killer T cells. HIV infects and destroys CD4-positive cells, leaving patients with a crippled immune system. Throughout the course of HIV disease, however, patients have high levels of HIV-specific killer T cells. Early after initial infection, these cells are able to effectively kill the virus and reduce viral load. On the other hand, during the later stage of disease killer T cells, while still present, seem no longer able to control the virus. In an article in the November 4 issue of the Journal of Clinical Investigation, Premlata Shankar and colleagues from the Center for Blood Research at Harvard Medical School suggest why this might be the case.

The researchers compared killer T cells from HIV infected asymptomic individuals with those from symptomatic AIDS patients. They examined the killer cells’ ability to eliminate target cells infected with laboratory strains of HIV on one hand, and with autologous virus (isolated from the patient) on the other. What they found is that killer T cells from asymptomatic individuals can recognize and kill both types of target cells. In contrast, the killer T cells from symptomatic patients, while still able to recognize and eliminate the laboratory strain targets, no longer killed target cells that were infected with their own, autologous, virus. This is likely due to the virus’ propensity to mutate and the in inability of the patient’s weakened immune system to keep up with the changing virus.


These results demonstrate that the high number of HIV-specific killer T cells found in AIDS patients are remnants of what used to be an effective response early after infection but no longer recognize the mutated autologous virus. Moreover, these findings reveal that conventional assays to measure killer T cell responses in HIV patients--which focus on responses to laboratory strains--do not accurately reflect but overestimate the response to the patient’s autologous virus.


CONTACT:
Premlata Shankar
Harvard Medical School
The Center for Blood Research
800 Huntington Avenue
Boston, MA 02115
USA
PHONE: 617-278-3476
FAX: 617-278-3403
E-mail: shankar@cbr.med.harvard.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>