Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool for studying animal models of neurological and psychiatric diseases

05.11.2002


Will allow non-invasive study of neurochemistry, behavior, and disease progression



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

This "proof-of-principle" experiment, described in the November issue of the Journal of Nuclear Medicine, "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson’s and Alzheimer’s disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the paper. Studying animal models may help scientists better understand and develop treatments for the human diseases.


Thanos and his team used microPET to measure the level of "D2" receptors for dopamine -- a brain chemical associated with feelings of reward and pleasure, which has been found to play a role in drug addiction -- in the brains of normal mice and so-called knockout mice, which had been genetically engineered to lack the gene for D2. The dopamine D2 receptor has been implicated in a wide variety of neuropsychiatric disorders, including, in recent studies by Brookhaven researchers, alcoholism and substance abuse. Thus, these D2-deficient mice are important for studying human diseases.

Before the scans, each mouse was given an injection of a radiotracer molecule designed to bind to D2 receptors. The microPET scanner then picked up the signal from the tracer to show where and how much was bound in various parts of the brain. The level of the tracer indicates the number of receptors.

In the striatum, a region of the brain normally rich in D2 receptors, "deficient" mice had significantly lower levels of tracer binding compared with their normal counterparts. There was no difference in tracer binding between strains in the cerebellum, an area of the brain that normally lacks D2 receptors, which was studied for comparison.

The scientists ruled out anatomical differences as a possible explanation for their results by comparing magnetic resonance imaging (MRI) brain scans of the two strains, which showed no differences. They also confirmed the difference in D2 receptor levels between "deficient" and normal mice with traditional autoradiography, where tissue samples are labeled with a radiotracer to reveal receptor levels.

"The results clearly show that microPET is an excellent technique that can pick up the neurochemical difference between the two strains in a non-invasive way," Thanos said. "And because this technique can be used in living animals, we can now study how these neurochemical differences between genetic strains of mice affect behavior and/or disease progression over time in the same animals," he said.

The technique can easily be extended to study other human neurological or psychiatric diseases for which knockout animal models exist, such as Alzheimer’s and Parkinson’s disease, or even depression and anxiety disorders.

This work was funded by the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.


The U.S. Department of Energy’s Brookhaven National Laboratory (http://www.bnl.gov) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Panayotis Thanos lives in Port Jefferson, New York.


Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>