Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool for studying animal models of neurological and psychiatric diseases


Will allow non-invasive study of neurochemistry, behavior, and disease progression

Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice.

This "proof-of-principle" experiment, described in the November issue of the Journal of Nuclear Medicine, "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson’s and Alzheimer’s disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the paper. Studying animal models may help scientists better understand and develop treatments for the human diseases.

Thanos and his team used microPET to measure the level of "D2" receptors for dopamine -- a brain chemical associated with feelings of reward and pleasure, which has been found to play a role in drug addiction -- in the brains of normal mice and so-called knockout mice, which had been genetically engineered to lack the gene for D2. The dopamine D2 receptor has been implicated in a wide variety of neuropsychiatric disorders, including, in recent studies by Brookhaven researchers, alcoholism and substance abuse. Thus, these D2-deficient mice are important for studying human diseases.

Before the scans, each mouse was given an injection of a radiotracer molecule designed to bind to D2 receptors. The microPET scanner then picked up the signal from the tracer to show where and how much was bound in various parts of the brain. The level of the tracer indicates the number of receptors.

In the striatum, a region of the brain normally rich in D2 receptors, "deficient" mice had significantly lower levels of tracer binding compared with their normal counterparts. There was no difference in tracer binding between strains in the cerebellum, an area of the brain that normally lacks D2 receptors, which was studied for comparison.

The scientists ruled out anatomical differences as a possible explanation for their results by comparing magnetic resonance imaging (MRI) brain scans of the two strains, which showed no differences. They also confirmed the difference in D2 receptor levels between "deficient" and normal mice with traditional autoradiography, where tissue samples are labeled with a radiotracer to reveal receptor levels.

"The results clearly show that microPET is an excellent technique that can pick up the neurochemical difference between the two strains in a non-invasive way," Thanos said. "And because this technique can be used in living animals, we can now study how these neurochemical differences between genetic strains of mice affect behavior and/or disease progression over time in the same animals," he said.

The technique can easily be extended to study other human neurological or psychiatric diseases for which knockout animal models exist, such as Alzheimer’s and Parkinson’s disease, or even depression and anxiety disorders.

This work was funded by the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse, and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

The U.S. Department of Energy’s Brookhaven National Laboratory ( conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.

Note to local editors: Panayotis Thanos lives in Port Jefferson, New York.

Karen McNulty Walsh | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>