Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for immune system player may help improve cancer vaccines

01.11.2002


Researchers have discovered that a molecule best known for its anti-microbial properties also has the ability to activate key cells in the immune response. This newly discovered function, reported in the Nov. 1, 2002, issue of Science*, suggests the molecule, a peptide called ß-defensin 2, may be useful in the development of more effective cancer vaccines. Scientists have found that ß-defensin 2 initiates a chain of events leading to the growth and multiplication of T cells, components of the immune system that recognize and kill foreign cells that have invaded the body.



Defensins are known to be an important component of the body’s immediate response to infection. ß-defensin 2 attacks and destroys a broad range of bacteria as part of the innate immune system, the body’s first line of defense against such infections.

The new finding links ß-defensin 2 to the second arm of the immune system, adaptive immunity. The adaptive immune response combats pathogens that evade the body’s initial defense mechanisms. Unlike innate immunity, the adaptive immune system develops specifically in response to an infection, changing as needed to ward off each invader.


"This link between the innate and adaptive immune systems is important for our understanding of the body’s ability to detect infection," said Arya Biragyn, Ph.D., National Cancer Institute (NCI) staff scientist and first author of the study. "ß-defensin 2 is likely to play an important role in the immune system’s ability to recognize protein fragments from the body’s own cells, including tumor cells."

Working in both mice and laboratory cell cultures, Biragyn and his colleagues found that ß-defensin 2 directly activates immune cells known as dendritic cells. Once activated, dendritic cells interact with other components of the immune system to stimulate the multiplication of a subset of T cells that will recognize and destroy infected cells. Dendritic cells can also trigger attack of tumor cells by the immune system.

"When we administered ß-defensin 2 to mice, we observed a robust response among cells involved in anti-tumor immunity," noted NCI’s Larry W. Kwak, M.D., Ph.D., the senior investigator on the study. Researchers hope to take advantage of this property by incorporating ß-defensin 2 into cancer vaccines.

Cancer vaccines are an investigational therapy designed to program the body’s own immune system to attack a tumor. The vaccine does this by training T cells to recognize cancerous cells. Scientists hope that adding ß-defensin 2 to such vaccines will promote the growth and multiplication of the tumor-destroying cells, improving patient response to the therapy.

Similarly, researchers hope that ß-defensin 2 will also be useful in improving AIDS vaccines in the future.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov
http://www.nci.nih.gov/

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>