Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for immune system player may help improve cancer vaccines

01.11.2002


Researchers have discovered that a molecule best known for its anti-microbial properties also has the ability to activate key cells in the immune response. This newly discovered function, reported in the Nov. 1, 2002, issue of Science*, suggests the molecule, a peptide called ß-defensin 2, may be useful in the development of more effective cancer vaccines. Scientists have found that ß-defensin 2 initiates a chain of events leading to the growth and multiplication of T cells, components of the immune system that recognize and kill foreign cells that have invaded the body.



Defensins are known to be an important component of the body’s immediate response to infection. ß-defensin 2 attacks and destroys a broad range of bacteria as part of the innate immune system, the body’s first line of defense against such infections.

The new finding links ß-defensin 2 to the second arm of the immune system, adaptive immunity. The adaptive immune response combats pathogens that evade the body’s initial defense mechanisms. Unlike innate immunity, the adaptive immune system develops specifically in response to an infection, changing as needed to ward off each invader.


"This link between the innate and adaptive immune systems is important for our understanding of the body’s ability to detect infection," said Arya Biragyn, Ph.D., National Cancer Institute (NCI) staff scientist and first author of the study. "ß-defensin 2 is likely to play an important role in the immune system’s ability to recognize protein fragments from the body’s own cells, including tumor cells."

Working in both mice and laboratory cell cultures, Biragyn and his colleagues found that ß-defensin 2 directly activates immune cells known as dendritic cells. Once activated, dendritic cells interact with other components of the immune system to stimulate the multiplication of a subset of T cells that will recognize and destroy infected cells. Dendritic cells can also trigger attack of tumor cells by the immune system.

"When we administered ß-defensin 2 to mice, we observed a robust response among cells involved in anti-tumor immunity," noted NCI’s Larry W. Kwak, M.D., Ph.D., the senior investigator on the study. Researchers hope to take advantage of this property by incorporating ß-defensin 2 into cancer vaccines.

Cancer vaccines are an investigational therapy designed to program the body’s own immune system to attack a tumor. The vaccine does this by training T cells to recognize cancerous cells. Scientists hope that adding ß-defensin 2 to such vaccines will promote the growth and multiplication of the tumor-destroying cells, improving patient response to the therapy.

Similarly, researchers hope that ß-defensin 2 will also be useful in improving AIDS vaccines in the future.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov
http://www.nci.nih.gov/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>