Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New role for immune system player may help improve cancer vaccines

01.11.2002


Researchers have discovered that a molecule best known for its anti-microbial properties also has the ability to activate key cells in the immune response. This newly discovered function, reported in the Nov. 1, 2002, issue of Science*, suggests the molecule, a peptide called ß-defensin 2, may be useful in the development of more effective cancer vaccines. Scientists have found that ß-defensin 2 initiates a chain of events leading to the growth and multiplication of T cells, components of the immune system that recognize and kill foreign cells that have invaded the body.



Defensins are known to be an important component of the body’s immediate response to infection. ß-defensin 2 attacks and destroys a broad range of bacteria as part of the innate immune system, the body’s first line of defense against such infections.

The new finding links ß-defensin 2 to the second arm of the immune system, adaptive immunity. The adaptive immune response combats pathogens that evade the body’s initial defense mechanisms. Unlike innate immunity, the adaptive immune system develops specifically in response to an infection, changing as needed to ward off each invader.


"This link between the innate and adaptive immune systems is important for our understanding of the body’s ability to detect infection," said Arya Biragyn, Ph.D., National Cancer Institute (NCI) staff scientist and first author of the study. "ß-defensin 2 is likely to play an important role in the immune system’s ability to recognize protein fragments from the body’s own cells, including tumor cells."

Working in both mice and laboratory cell cultures, Biragyn and his colleagues found that ß-defensin 2 directly activates immune cells known as dendritic cells. Once activated, dendritic cells interact with other components of the immune system to stimulate the multiplication of a subset of T cells that will recognize and destroy infected cells. Dendritic cells can also trigger attack of tumor cells by the immune system.

"When we administered ß-defensin 2 to mice, we observed a robust response among cells involved in anti-tumor immunity," noted NCI’s Larry W. Kwak, M.D., Ph.D., the senior investigator on the study. Researchers hope to take advantage of this property by incorporating ß-defensin 2 into cancer vaccines.

Cancer vaccines are an investigational therapy designed to program the body’s own immune system to attack a tumor. The vaccine does this by training T cells to recognize cancerous cells. Scientists hope that adding ß-defensin 2 to such vaccines will promote the growth and multiplication of the tumor-destroying cells, improving patient response to the therapy.

Similarly, researchers hope that ß-defensin 2 will also be useful in improving AIDS vaccines in the future.

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov
http://www.nci.nih.gov/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>