Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New role for immune system player may help improve cancer vaccines


Researchers have discovered that a molecule best known for its anti-microbial properties also has the ability to activate key cells in the immune response. This newly discovered function, reported in the Nov. 1, 2002, issue of Science*, suggests the molecule, a peptide called ß-defensin 2, may be useful in the development of more effective cancer vaccines. Scientists have found that ß-defensin 2 initiates a chain of events leading to the growth and multiplication of T cells, components of the immune system that recognize and kill foreign cells that have invaded the body.

Defensins are known to be an important component of the body’s immediate response to infection. ß-defensin 2 attacks and destroys a broad range of bacteria as part of the innate immune system, the body’s first line of defense against such infections.

The new finding links ß-defensin 2 to the second arm of the immune system, adaptive immunity. The adaptive immune response combats pathogens that evade the body’s initial defense mechanisms. Unlike innate immunity, the adaptive immune system develops specifically in response to an infection, changing as needed to ward off each invader.

"This link between the innate and adaptive immune systems is important for our understanding of the body’s ability to detect infection," said Arya Biragyn, Ph.D., National Cancer Institute (NCI) staff scientist and first author of the study. "ß-defensin 2 is likely to play an important role in the immune system’s ability to recognize protein fragments from the body’s own cells, including tumor cells."

Working in both mice and laboratory cell cultures, Biragyn and his colleagues found that ß-defensin 2 directly activates immune cells known as dendritic cells. Once activated, dendritic cells interact with other components of the immune system to stimulate the multiplication of a subset of T cells that will recognize and destroy infected cells. Dendritic cells can also trigger attack of tumor cells by the immune system.

"When we administered ß-defensin 2 to mice, we observed a robust response among cells involved in anti-tumor immunity," noted NCI’s Larry W. Kwak, M.D., Ph.D., the senior investigator on the study. Researchers hope to take advantage of this property by incorporating ß-defensin 2 into cancer vaccines.

Cancer vaccines are an investigational therapy designed to program the body’s own immune system to attack a tumor. The vaccine does this by training T cells to recognize cancerous cells. Scientists hope that adding ß-defensin 2 to such vaccines will promote the growth and multiplication of the tumor-destroying cells, improving patient response to the therapy.

Similarly, researchers hope that ß-defensin 2 will also be useful in improving AIDS vaccines in the future.

NCI Press Office | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>