Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers link gene to depressive disorders in women

31.10.2002


Researchers from the University of Pittsburgh Medical Center have made significant progress in identifying the first susceptibility gene for clinical depression, the second leading cause of disability worldwide, possibly providing an important step toward changing the way doctors diagnose and treat major depression that affects nearly 10 percent of the population.



Research results, which were accepted for rapid publication and published today in the American Journal of Medical Genetics, show significant evidence for linkage of unipolar mood disorders to a specific region of chromosome 2q33-35 in women. The findings suggest that a gene in this region contributes to the vulnerability of women in families afflicted with recurrent, early onset major depressive disorder (RE-MDD), to developing mood disorders of varying severity. Men with the same genetic background did not have any more chance of developing mood disorders than normal.

"We have narrowed our search for a susceptibility locus for clinical depression to a small region of chromosome 2 that constitutes only 0.01% of the human genome," said lead author George S. Zubenko, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine and adjunct professor of biological sciences at Carnegie Mellon University. "These results confirm our earlier findings this year that the susceptibility gene in this region selectively affects the vulnerability of women, but not men, to developing severe depression."


According to Dr. Zubenko, women are twice as likely to develop depression as men, and this study provides evidence that genetic differences may account for some of that disparity. The narrow region of chromosome 2 highlighted by the researchers contains only about eight genes, including a gene called CREB1, which is an excellent candidate for a susceptibility gene for mood disorders. The CREB1 gene encodes a regulatory protein (CREB) that orchestrates the expression of large numbers of other genes that play important roles in the brain.

Alterations in CREB1 expression have been reported in the brains of patients who died with major depression, those of animal models of major depression and related disorders and in the brains of animals treated with antidepressant drugs. CREB has also been implicated in neuronal plasticity, cognition and long-term memory, abnormalities of which commonly occur in patients with major depression, may predispose patients to the onset or recurrence of major depression, and may be related to the eventual development of irreversible dementias like Alzheimer’s disease in some patients. Interactions of CREB with estrogen receptors might explain how inherited variants of CREB1 could affect the susceptibility of major depression only in women

This is the second study this year by Dr. Zubenko and his Pittsburgh team providing evidence that vulnerability to depression is influenced by gender. Research published in March 2002 revealed surprising information that RE-MDD is caused by different genes in men and women, and in fact suggested sex-specificity of genetic susceptibility was commonplace. In that study, the researchers revealed that of 19 chromosomal regions associated with the development of RE-MDD, 16 were associated with the disorder in either men or in women – but not both.

"Studies such as this one are providing us with a better understanding of the biology of complicated disorders such as major depression, which is unlikely to represent a single disease with a unitary cause," said Dr. Zubenko. "Instead, clinical depression is probably more like anemia. Both of these disorders are defined by a collection of clinical features that result from different causes in different people. Treatment or prevention efforts are usually most successful when they are aimed at the specific causes of a disorder."

Further progress in diagnosis and treatment of clinical depression that result from these findings will likely proceed along several avenues, according to Dr. Zubenko. "The identification and characterization of susceptibility genes and their products will provide new opportunities for drug development and disease prevention, and new information about the biology of mood and its regulation," he said. Dr. Zubenko explained that these developments are time and resource intensive, and that it would be unlikely that the results of this avenue of research would affect clinical care in less than a decade. However, other applications may have important implications in the nearer future.

"Genotyping markers in chromosomal regions that harbor susceptibility genes may provide more immediate advances in the treatment of major depression. For example, individuals with particular genetic markers in these regions may respond better to particular current treatments than others. This strategy may enable clinicans to use genetic markers to better match individual patients to treatments to which they will optimally respond, while minimizing side effects," Dr. Zubenko said. "In current practice, the choice of a particular antidepressant for a patient is largely a hit or miss proposition that often leads to multiple medication trials before the depression remits. Side effects are common and can be debilitating."


Other researchers include: Hugh B. Hughes III; Brion S. Maher, Ph.D.; J. Scott Stiffler, B.S.; Wendy Zubenko, Ed.D, R.N., C.S.; and Mary L. Marazita, Ph.D.

CONTACT:
Craig Dunhoff
Lisa Rossi
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
DunhoffCC@upmc.edu
RossiL@upmc.edu

Craig Dunhoff | EurekAlert!
Further information:
http://www.zubenkolab.pitt.edu/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>