Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers link gene to depressive disorders in women

31.10.2002


Researchers from the University of Pittsburgh Medical Center have made significant progress in identifying the first susceptibility gene for clinical depression, the second leading cause of disability worldwide, possibly providing an important step toward changing the way doctors diagnose and treat major depression that affects nearly 10 percent of the population.



Research results, which were accepted for rapid publication and published today in the American Journal of Medical Genetics, show significant evidence for linkage of unipolar mood disorders to a specific region of chromosome 2q33-35 in women. The findings suggest that a gene in this region contributes to the vulnerability of women in families afflicted with recurrent, early onset major depressive disorder (RE-MDD), to developing mood disorders of varying severity. Men with the same genetic background did not have any more chance of developing mood disorders than normal.

"We have narrowed our search for a susceptibility locus for clinical depression to a small region of chromosome 2 that constitutes only 0.01% of the human genome," said lead author George S. Zubenko, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine and adjunct professor of biological sciences at Carnegie Mellon University. "These results confirm our earlier findings this year that the susceptibility gene in this region selectively affects the vulnerability of women, but not men, to developing severe depression."


According to Dr. Zubenko, women are twice as likely to develop depression as men, and this study provides evidence that genetic differences may account for some of that disparity. The narrow region of chromosome 2 highlighted by the researchers contains only about eight genes, including a gene called CREB1, which is an excellent candidate for a susceptibility gene for mood disorders. The CREB1 gene encodes a regulatory protein (CREB) that orchestrates the expression of large numbers of other genes that play important roles in the brain.

Alterations in CREB1 expression have been reported in the brains of patients who died with major depression, those of animal models of major depression and related disorders and in the brains of animals treated with antidepressant drugs. CREB has also been implicated in neuronal plasticity, cognition and long-term memory, abnormalities of which commonly occur in patients with major depression, may predispose patients to the onset or recurrence of major depression, and may be related to the eventual development of irreversible dementias like Alzheimer’s disease in some patients. Interactions of CREB with estrogen receptors might explain how inherited variants of CREB1 could affect the susceptibility of major depression only in women

This is the second study this year by Dr. Zubenko and his Pittsburgh team providing evidence that vulnerability to depression is influenced by gender. Research published in March 2002 revealed surprising information that RE-MDD is caused by different genes in men and women, and in fact suggested sex-specificity of genetic susceptibility was commonplace. In that study, the researchers revealed that of 19 chromosomal regions associated with the development of RE-MDD, 16 were associated with the disorder in either men or in women – but not both.

"Studies such as this one are providing us with a better understanding of the biology of complicated disorders such as major depression, which is unlikely to represent a single disease with a unitary cause," said Dr. Zubenko. "Instead, clinical depression is probably more like anemia. Both of these disorders are defined by a collection of clinical features that result from different causes in different people. Treatment or prevention efforts are usually most successful when they are aimed at the specific causes of a disorder."

Further progress in diagnosis and treatment of clinical depression that result from these findings will likely proceed along several avenues, according to Dr. Zubenko. "The identification and characterization of susceptibility genes and their products will provide new opportunities for drug development and disease prevention, and new information about the biology of mood and its regulation," he said. Dr. Zubenko explained that these developments are time and resource intensive, and that it would be unlikely that the results of this avenue of research would affect clinical care in less than a decade. However, other applications may have important implications in the nearer future.

"Genotyping markers in chromosomal regions that harbor susceptibility genes may provide more immediate advances in the treatment of major depression. For example, individuals with particular genetic markers in these regions may respond better to particular current treatments than others. This strategy may enable clinicans to use genetic markers to better match individual patients to treatments to which they will optimally respond, while minimizing side effects," Dr. Zubenko said. "In current practice, the choice of a particular antidepressant for a patient is largely a hit or miss proposition that often leads to multiple medication trials before the depression remits. Side effects are common and can be debilitating."


Other researchers include: Hugh B. Hughes III; Brion S. Maher, Ph.D.; J. Scott Stiffler, B.S.; Wendy Zubenko, Ed.D, R.N., C.S.; and Mary L. Marazita, Ph.D.

CONTACT:
Craig Dunhoff
Lisa Rossi
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
DunhoffCC@upmc.edu
RossiL@upmc.edu

Craig Dunhoff | EurekAlert!
Further information:
http://www.zubenkolab.pitt.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>