Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh researchers link gene to depressive disorders in women

31.10.2002


Researchers from the University of Pittsburgh Medical Center have made significant progress in identifying the first susceptibility gene for clinical depression, the second leading cause of disability worldwide, possibly providing an important step toward changing the way doctors diagnose and treat major depression that affects nearly 10 percent of the population.



Research results, which were accepted for rapid publication and published today in the American Journal of Medical Genetics, show significant evidence for linkage of unipolar mood disorders to a specific region of chromosome 2q33-35 in women. The findings suggest that a gene in this region contributes to the vulnerability of women in families afflicted with recurrent, early onset major depressive disorder (RE-MDD), to developing mood disorders of varying severity. Men with the same genetic background did not have any more chance of developing mood disorders than normal.

"We have narrowed our search for a susceptibility locus for clinical depression to a small region of chromosome 2 that constitutes only 0.01% of the human genome," said lead author George S. Zubenko, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine and adjunct professor of biological sciences at Carnegie Mellon University. "These results confirm our earlier findings this year that the susceptibility gene in this region selectively affects the vulnerability of women, but not men, to developing severe depression."


According to Dr. Zubenko, women are twice as likely to develop depression as men, and this study provides evidence that genetic differences may account for some of that disparity. The narrow region of chromosome 2 highlighted by the researchers contains only about eight genes, including a gene called CREB1, which is an excellent candidate for a susceptibility gene for mood disorders. The CREB1 gene encodes a regulatory protein (CREB) that orchestrates the expression of large numbers of other genes that play important roles in the brain.

Alterations in CREB1 expression have been reported in the brains of patients who died with major depression, those of animal models of major depression and related disorders and in the brains of animals treated with antidepressant drugs. CREB has also been implicated in neuronal plasticity, cognition and long-term memory, abnormalities of which commonly occur in patients with major depression, may predispose patients to the onset or recurrence of major depression, and may be related to the eventual development of irreversible dementias like Alzheimer’s disease in some patients. Interactions of CREB with estrogen receptors might explain how inherited variants of CREB1 could affect the susceptibility of major depression only in women

This is the second study this year by Dr. Zubenko and his Pittsburgh team providing evidence that vulnerability to depression is influenced by gender. Research published in March 2002 revealed surprising information that RE-MDD is caused by different genes in men and women, and in fact suggested sex-specificity of genetic susceptibility was commonplace. In that study, the researchers revealed that of 19 chromosomal regions associated with the development of RE-MDD, 16 were associated with the disorder in either men or in women – but not both.

"Studies such as this one are providing us with a better understanding of the biology of complicated disorders such as major depression, which is unlikely to represent a single disease with a unitary cause," said Dr. Zubenko. "Instead, clinical depression is probably more like anemia. Both of these disorders are defined by a collection of clinical features that result from different causes in different people. Treatment or prevention efforts are usually most successful when they are aimed at the specific causes of a disorder."

Further progress in diagnosis and treatment of clinical depression that result from these findings will likely proceed along several avenues, according to Dr. Zubenko. "The identification and characterization of susceptibility genes and their products will provide new opportunities for drug development and disease prevention, and new information about the biology of mood and its regulation," he said. Dr. Zubenko explained that these developments are time and resource intensive, and that it would be unlikely that the results of this avenue of research would affect clinical care in less than a decade. However, other applications may have important implications in the nearer future.

"Genotyping markers in chromosomal regions that harbor susceptibility genes may provide more immediate advances in the treatment of major depression. For example, individuals with particular genetic markers in these regions may respond better to particular current treatments than others. This strategy may enable clinicans to use genetic markers to better match individual patients to treatments to which they will optimally respond, while minimizing side effects," Dr. Zubenko said. "In current practice, the choice of a particular antidepressant for a patient is largely a hit or miss proposition that often leads to multiple medication trials before the depression remits. Side effects are common and can be debilitating."


Other researchers include: Hugh B. Hughes III; Brion S. Maher, Ph.D.; J. Scott Stiffler, B.S.; Wendy Zubenko, Ed.D, R.N., C.S.; and Mary L. Marazita, Ph.D.

CONTACT:
Craig Dunhoff
Lisa Rossi
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
DunhoffCC@upmc.edu
RossiL@upmc.edu

Craig Dunhoff | EurekAlert!
Further information:
http://www.zubenkolab.pitt.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>