Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging: diagnosing diseases before symptoms strike

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are developing methods to track molecular events in the body to diagnose disease long before symptoms appear and to predict the effectiveness of drug therapies. The research is under way at the School of Medicine’s new Molecular Imaging Center at the Mallinckrodt Institute of Radiology. The Center is funded by a five-year $9.4 million grant from the National Cancer Institute.



"Molecular imaging combines the latest in imaging technology with the power of molecular biology," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the new center.

"We believe that molecular imaging will one day enable us to diagnose specific molecular events of cancer, neurologic disease or inflammation earlier in the course of disease, and that this will help doctors identify the most effective therapy for individual patients."


Piwnica-Worms described molecular imaging and research being done at the Center during the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.

Investigators at the Center are using molecular imaging to study protein-protein interactions, immune cells attacking a tumor, and the course of a viral infection and its response to antiviral therapy. Other researchers are developing a means to noninvasively predict the effectiveness of particular chemotherapy drugs in patients with advanced lung cancer. The investigators are studying lung tumors for ways to image the activity of a protein that pumps certain anticancer drugs out of tumor cells, rendering the drugs ineffective for those individuals.

Positron emission tomography (PET) is one example of molecular imaging technology already in use clinically. PET scans are used, for instance, to detect the spread of certain cancers. Patients are given a form of sugar -- glucose -- that contains a weak radioactive label. The labeled sugar is taken up more rapidly by tumor cells than by normal cells because the tumor cells are growing at a faster rate. PET-scan imaging reveals this higher level of uptake, thereby providing a non-surgical means of detecting an otherwise hidden tumor.

Researchers at Washington University’s Molecular Imaging Center are developing new applications for existing technologies, such as PET, and exploring new methods of molecular imaging using near-infrared fluorescence and bioluminescence probes.

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell E. Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/piwnica.html

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>