Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging: diagnosing diseases before symptoms strike

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are developing methods to track molecular events in the body to diagnose disease long before symptoms appear and to predict the effectiveness of drug therapies. The research is under way at the School of Medicine’s new Molecular Imaging Center at the Mallinckrodt Institute of Radiology. The Center is funded by a five-year $9.4 million grant from the National Cancer Institute.



"Molecular imaging combines the latest in imaging technology with the power of molecular biology," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the new center.

"We believe that molecular imaging will one day enable us to diagnose specific molecular events of cancer, neurologic disease or inflammation earlier in the course of disease, and that this will help doctors identify the most effective therapy for individual patients."


Piwnica-Worms described molecular imaging and research being done at the Center during the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.

Investigators at the Center are using molecular imaging to study protein-protein interactions, immune cells attacking a tumor, and the course of a viral infection and its response to antiviral therapy. Other researchers are developing a means to noninvasively predict the effectiveness of particular chemotherapy drugs in patients with advanced lung cancer. The investigators are studying lung tumors for ways to image the activity of a protein that pumps certain anticancer drugs out of tumor cells, rendering the drugs ineffective for those individuals.

Positron emission tomography (PET) is one example of molecular imaging technology already in use clinically. PET scans are used, for instance, to detect the spread of certain cancers. Patients are given a form of sugar -- glucose -- that contains a weak radioactive label. The labeled sugar is taken up more rapidly by tumor cells than by normal cells because the tumor cells are growing at a faster rate. PET-scan imaging reveals this higher level of uptake, thereby providing a non-surgical means of detecting an otherwise hidden tumor.

Researchers at Washington University’s Molecular Imaging Center are developing new applications for existing technologies, such as PET, and exploring new methods of molecular imaging using near-infrared fluorescence and bioluminescence probes.

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell E. Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/piwnica.html

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>