Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging: diagnosing diseases before symptoms strike

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are developing methods to track molecular events in the body to diagnose disease long before symptoms appear and to predict the effectiveness of drug therapies. The research is under way at the School of Medicine’s new Molecular Imaging Center at the Mallinckrodt Institute of Radiology. The Center is funded by a five-year $9.4 million grant from the National Cancer Institute.



"Molecular imaging combines the latest in imaging technology with the power of molecular biology," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the new center.

"We believe that molecular imaging will one day enable us to diagnose specific molecular events of cancer, neurologic disease or inflammation earlier in the course of disease, and that this will help doctors identify the most effective therapy for individual patients."


Piwnica-Worms described molecular imaging and research being done at the Center during the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.

Investigators at the Center are using molecular imaging to study protein-protein interactions, immune cells attacking a tumor, and the course of a viral infection and its response to antiviral therapy. Other researchers are developing a means to noninvasively predict the effectiveness of particular chemotherapy drugs in patients with advanced lung cancer. The investigators are studying lung tumors for ways to image the activity of a protein that pumps certain anticancer drugs out of tumor cells, rendering the drugs ineffective for those individuals.

Positron emission tomography (PET) is one example of molecular imaging technology already in use clinically. PET scans are used, for instance, to detect the spread of certain cancers. Patients are given a form of sugar -- glucose -- that contains a weak radioactive label. The labeled sugar is taken up more rapidly by tumor cells than by normal cells because the tumor cells are growing at a faster rate. PET-scan imaging reveals this higher level of uptake, thereby providing a non-surgical means of detecting an otherwise hidden tumor.

Researchers at Washington University’s Molecular Imaging Center are developing new applications for existing technologies, such as PET, and exploring new methods of molecular imaging using near-infrared fluorescence and bioluminescence probes.

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell E. Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/piwnica.html

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>