Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging: diagnosing diseases before symptoms strike

30.10.2002


Researchers at Washington University School of Medicine in St. Louis are developing methods to track molecular events in the body to diagnose disease long before symptoms appear and to predict the effectiveness of drug therapies. The research is under way at the School of Medicine’s new Molecular Imaging Center at the Mallinckrodt Institute of Radiology. The Center is funded by a five-year $9.4 million grant from the National Cancer Institute.



"Molecular imaging combines the latest in imaging technology with the power of molecular biology," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the new center.

"We believe that molecular imaging will one day enable us to diagnose specific molecular events of cancer, neurologic disease or inflammation earlier in the course of disease, and that this will help doctors identify the most effective therapy for individual patients."


Piwnica-Worms described molecular imaging and research being done at the Center during the 40th annual New Horizons in Science Briefing, sponsored by the Council for the Advancement of Science Writing, held Oct. 27-30 at Washington University in St. Louis.

Investigators at the Center are using molecular imaging to study protein-protein interactions, immune cells attacking a tumor, and the course of a viral infection and its response to antiviral therapy. Other researchers are developing a means to noninvasively predict the effectiveness of particular chemotherapy drugs in patients with advanced lung cancer. The investigators are studying lung tumors for ways to image the activity of a protein that pumps certain anticancer drugs out of tumor cells, rendering the drugs ineffective for those individuals.

Positron emission tomography (PET) is one example of molecular imaging technology already in use clinically. PET scans are used, for instance, to detect the spread of certain cancers. Patients are given a form of sugar -- glucose -- that contains a weak radioactive label. The labeled sugar is taken up more rapidly by tumor cells than by normal cells because the tumor cells are growing at a faster rate. PET-scan imaging reveals this higher level of uptake, thereby providing a non-surgical means of detecting an otherwise hidden tumor.

Researchers at Washington University’s Molecular Imaging Center are developing new applications for existing technologies, such as PET, and exploring new methods of molecular imaging using near-infrared fluorescence and bioluminescence probes.

Questions

Contact: Darrell E. Ward, assc. director for research communications, Washington University School of Medicine, (314) 286-0122; wardd@msnotes.wustl.edu

Darrell E. Ward | EurekAlert!
Further information:
http://news-info.wustl.edu/News/casw/piwnica.html

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>