Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain study of back pain sufferers yields intriguing results

28.10.2002



Scans show amplified pain signals in patients with back pain of unknown origin

Patients with lower back pain that can’t be traced to a specific physical cause may have abnormal pain-processing pathways in their brains, according to a new study led by University of Michigan researchers.

The effect, which as yet has no explanation, is similar to an altered pain perception effect in fibromyalgia patients recently reported by the same research team.



In fact, the study finds, people with lower back pain say they feel severe pain, and have measurable pain signals in their brains, from a gentle finger squeeze that barely feels unpleasant to people without lower back pain. People with fibromyalgia felt about the same pain from a squeeze of the same intensity.

But the squeeze’s force must be increased sharply to cause healthy people to feel the same level of pain -- and their pain signals register p in different brain areas.

The results, which will be presented Oct. 27 at the annual meeting of the American College of Rheumatology in New Orleans, may help lead researchers to important findings on lower back pain, and on enhanced pain perception in general.

Senior authors Richard Gracely, Ph.D., and Daniel Clauw, M.D., did the study at Georgetown University Medical Center and the National Institutes of Health, but are now continuing the work at the University of Michigan Health System. In May, they and their colleagues published a paper in the journal Arthritis and Rheumatism on pain perception in fibromyalgia patients.

To correlate subjective pain sensation with objective views of brain signals, the researchers used a super-fast form of MRI brain imaging, called functional MRI or fMRI. They looked at the brains of 15 people with lower back pain whose body scans showed no mechanical cause, such as a ruptured disk, for their pain. They also looked at 15 fibromyalgia patients and 15 normal control subjects.

As a result, they say, the study offers the first objective method for corroborating what lower back pain patients report they feel, and what’s going on in their brains at the precise moment they feel it. And, it continues to give researchers a road map of the areas of the brain that are most -- and least -- active when patients feel pain. The researchers hope that further study on larger groups of patients will yield more information on altered pain processing.

"The fMRI technology gave us a unique opportunity to look at the neurobiology underlying tenderness, which is a hallmark of both lower back pain and fibromyalgia," says Clauw. "These results, combined with other work done by our group and others, have convinced us that some pathologic process is making these patients more sensitive. For some reason, still unknown, there’s a neurobiological amplification of their pain signals."

Lower back pain affects nearly all Americans from time to time, especially those who are overweight, sedentary or work in physically demanding jobs. The pain can interfere with life and work; problems stemming from lower back pain are the second most frequent cause of lost work days in adults under the age of 45, ranking below only the common cold.

Much of the pain may be due to pulled muscles, strained ligaments, damaged joints or small tears in the disks that act as cushions between the bones of the spine -- all causes that don’t show up well on X-rays but often can be seen on CT or conventional MRI scans. These physical causes often disappear after a few weeks, but many patients have chronic or recurring lower-back pain.

In the study, the lower-back pain patients were examined by CT scan to rule out mechanical causes of their pain. Then they, the fibromyalgia patients and the healthy control subjects had their brains scanned by fMRI for more than 10 minutes while a small, piston-controlled device applied precisely calibrated, rapidly pulsing pressure to the base of their left thumbnail. The pressures were varied over time, using painful and non-painful levels that had been set for each patient prior to the scan.

The study’s design gave two opportunities to compare patients and controls. The subjective comparison measured the pressure levels at which the pain rating given by back pain patients, fibromyalgia patients and control subjects was the same. The objective comparison looked at the rating that the three types of participants gave when the same level of pressure was applied.

The researchers found that it only took a mild pressure to produce self-reported feelings of pain in the lower-back pain and fibromyalgia patients, while the control subjects tolerated the same pressure with little pain.

"In both the back pain patients and the fibromyalgia patients, that same mild pressure also produced measurable brain responses in areas that process the sensation of pain," says Clauw. "But the same kind of brain responses weren’t seen in control subjects until the pressure on their thumb increased substantially."

Though brain activity increased in many of the same areas in both patients and control subjects, there were striking differences, too. All the subjects had increased activity in eight areas of their brains, but lower-back pain patients showed no increased activity in two areas that were active in both fibromyalgia patients and normal control subjects. Meanwhile, fibromyalgia patients showed increased activation in two other areas not active in back pain patients and healthy subjects.

This response suggests that lower-back pain patients have enhanced response to pain in some brain regions, and a diminished response in others, Clauw says.


The study was supported in part by the National Fibromyalgia Research Association, the U.S. Army and the NIH. In addition to Clauw and Gracely, the research team included Thorsten Giesecke and Masilo Grant of UMHS, Karen Munoz of NIH, Reshma Kumar of Georgetown, and Alf Nachemson of the University of Gotenberg, Sweden.


Kara Gavin | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>