Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Will Push Forward Fight Against Leukaemia

25.10.2002


A project which aims to make laboratory-grown leukaemia cells change form and then be used to prime a patient’s own immune system to kill off malignant cells has begun in Edinburgh. If successful, the study could give clinicians a way of destroying residual leukaemic cells which are undetectable by microscope. The findings could be helpful in the treatment of acute myeloblastic leukaemia (AML), one of the most common forms of leukaemia in adults.



Although about 70% of patients with AML achieve complete remission of the disease after chemotherapy treatment, around half of the younger patients and the majority of elderly patients will ultimately relapse and die as a consequence of the disease. Three years survival rates are about 40% in younger patients and 10% in older patients.

This study, based at the John Hughes Bennett Laboratories at the University of Edinburgh, is led by haematologist Dr Marc Turner, who is Clinical Director of the Edinburgh and SE Scotland Blood Transfusion Centre.Dr Turner explained: “Relapse after initial successful chemotherapy is caused by residual leukaemic cells which are below a level which can be detected by microscope. Sometimes, they can cause the disease to restart, and it is much harder to treat the second time around. Methods of eliminating this minimal residual disease, such as bone marrow transplantation, can be successful but this form of treatment is only suitable for younger patients who are able to withstand the side effects of the treatment.”


“However, research work during the past few years has shown that it is possible to grow leukaemic cells in the laboratory and force them to change into a kind of immune cell called the dendritic cell. Dendritic cells are responsible for generating primary immune responses which can lead to the destruction of leukaemia cells.”

The work has now moved forward to the next phase of clinical trials, where patients with AML will donate bone marrow or blood cells before undergoing chemotherapy treatment. If they go into remission, their stored leukaemic cells will be specially cultured and changed into dendritic cells, which will be given back to the patient by injection. The dozen patients in the study will be carefully monitored for clinical and immunological responses. The trial will last for 12 to 18 months and is funded by the Leukaemia Research Fund and the Scottish National Blood Transfusion Service.

Dr David Grant, Scientific Director of the Leukaemia Research Fund, said: "The study of immunology - harnessing the body`s immune system to fight leukaemia - has advanced amazingly over the last 20 years. It is now crucial that we translate this knowledge into benefits for patients."

Linda Menzies | alfa
Further information:
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>