Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Will Push Forward Fight Against Leukaemia

25.10.2002


A project which aims to make laboratory-grown leukaemia cells change form and then be used to prime a patient’s own immune system to kill off malignant cells has begun in Edinburgh. If successful, the study could give clinicians a way of destroying residual leukaemic cells which are undetectable by microscope. The findings could be helpful in the treatment of acute myeloblastic leukaemia (AML), one of the most common forms of leukaemia in adults.



Although about 70% of patients with AML achieve complete remission of the disease after chemotherapy treatment, around half of the younger patients and the majority of elderly patients will ultimately relapse and die as a consequence of the disease. Three years survival rates are about 40% in younger patients and 10% in older patients.

This study, based at the John Hughes Bennett Laboratories at the University of Edinburgh, is led by haematologist Dr Marc Turner, who is Clinical Director of the Edinburgh and SE Scotland Blood Transfusion Centre.Dr Turner explained: “Relapse after initial successful chemotherapy is caused by residual leukaemic cells which are below a level which can be detected by microscope. Sometimes, they can cause the disease to restart, and it is much harder to treat the second time around. Methods of eliminating this minimal residual disease, such as bone marrow transplantation, can be successful but this form of treatment is only suitable for younger patients who are able to withstand the side effects of the treatment.”


“However, research work during the past few years has shown that it is possible to grow leukaemic cells in the laboratory and force them to change into a kind of immune cell called the dendritic cell. Dendritic cells are responsible for generating primary immune responses which can lead to the destruction of leukaemia cells.”

The work has now moved forward to the next phase of clinical trials, where patients with AML will donate bone marrow or blood cells before undergoing chemotherapy treatment. If they go into remission, their stored leukaemic cells will be specially cultured and changed into dendritic cells, which will be given back to the patient by injection. The dozen patients in the study will be carefully monitored for clinical and immunological responses. The trial will last for 12 to 18 months and is funded by the Leukaemia Research Fund and the Scottish National Blood Transfusion Service.

Dr David Grant, Scientific Director of the Leukaemia Research Fund, said: "The study of immunology - harnessing the body`s immune system to fight leukaemia - has advanced amazingly over the last 20 years. It is now crucial that we translate this knowledge into benefits for patients."

Linda Menzies | alfa
Further information:
http://www.ed.ac.uk

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>