Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Scientist Testing Nanoparticles as Early Cancer Detection Agent

24.10.2002


Shuming Nie holds a joint appointment at Georgia Tech and Emory University


Biomedical scientist Shuming Nie is testing the use of nanoparticles called quantum dots to dramatically improve clinical diagnostic tests for the early detection of cancer. The tiny particles glow and act as markers on cells and genes, giving scientists the ability to rapidly analyze biopsy tissue from cancer patients so that doctors can provide the most effective therapy available.

Nie, a chemist by training, is an associate professor in the Wallace H. Coulter Department of Biomedical Engineering – a joint department operated by the Georgia Institute of Technology (Georgia Tech) and Emory University – and director of cancer nanotechnology at Emory’s Winship Cancer Institute.

His research focuses on the field of nanotechnolgy, in which scientists build devices and materials one atom or molecule at a time, creating structures that take on new properties by virtue of their miniature size. The basic building block of nanotechnology is a nanoparticle, and a nanometer is one-billionth of a meter, or about 100,000 times smaller than the width of a human hair.



Nanoparticles take on special properties because of their small size. For example, if you break a piece of candy into two pieces, each piece will still be sweet, but if you continue to break the candy until you reach the nanometer scale, the smaller pieces will taste completely different and have different properties.

Until recently, nanotechnology was primarily based in electronics, manufacturing, supercomputers and data storage. However Nie predicted years ago in a paper published in Science that the first major breakthroughs in the field will be in biomedical applications, such as early disease detection, imaging and drug delivery.

“Electronics may be the field most likely to derive the greatest economic benefit from nanotechnology,” Nie said. “However, much of the benefit is unlikely to occur for another 10 to 20 years, whereas the biomedical applications of nanotechnology are very close to being realized.”

Nie was recently recruited from Indiana University as a Georgia Cancer Coalition Distinguished Scientist. While at Indiana, Nie and his colleagues constructed a nanoscale semiconductor crystal. Also called a quantum dot, this particle is made of semiconductors with a limited ability to conduct electricity.

Because quantum dots are so small, their electrons are compacted, causing them to emit light or to act as a fluorescent tag. Quantum dots can bond chemically to biological molecules, enabling them to trace specific proteins within cells. Nie calls them “bioconjugated nanoparticles”—small particles that are chemically linked to biological materials.

Nanoparticle probes can be used as contrast markers in magnetic resonance imaging (MRI), in positron emission tomography (PET) for in-vivo molecular imaging, or they can be used as fluorescent tracers in optical microscopy. These tags can trace specific proteins in cells for cancer diagnosis or monitor the effectiveness of drug therapy. Because the dots glow with bright, fluorescent colors, scientists hope they will improve the sensitivity of diagnostic tests for molecules that are difficult to detect, such as those in cancer cells, or even the AIDS virus, Nie said.

“Basically, it is a barcoding technology that can encode genes and proteins,” Nie said. He plans to use bioconjugated nanoparticles for early identification, quantification, and localization of gene sequences, proteins, infectious organisms, or genetic disorders.

Many of the practical applications of nanoparticles are based on the different colors they absorb or emit in the light spectrum as their sizes change. A piece of gold, for instance, appears yellow in color, but appears red at nanoscale size. Broken down even smaller, it could appear to be blue.

Using a spectrum of six colors, in addition to four more colors in the infrared spectrum, scientists are able to finely tune nanoparticles to carry out tracking tasks traditionally accomplished using organic dyes. Nanoparticles have characteristics that are more desirable than dyes, however. Dyes fade more quickly, they can be toxic to cells, and they cannot be used together because each dye requires a different light wavelength to be visible. Nanoparticles can be illuminated using just one laser beam.

Scientists only have to vary the size of quantum dots slightly and they glow brightly in one of 10 available colors. When different sized dots are embedded in tiny beads made of a polymer material, the color of the bead can be finely tuned. Theoretically, beads with tiny permutations of color could tag a million different proteins or genetic sequences in a process called “multiplexing.”

Nie acts as a senior consultant to Bioplex Corp., a company spun out of his lab’s research in Indiana and headed by Tom Petzinger, CEO. The company, which holds the exclusive license from Indiana University for the synthesis of multiplexing dyes for imaging and detection, was recently added to the roster of start-ups at EmTech Bio, a business incubator jointly run by Georgia Tech and Emory University. Bioplex Corporation is partially owned by Pittsburgh-based LaunchCyte.

Scientists, including Nie, are currently studying methods of linking quantum dots to medical drugs or other therapeutic agents to target cancer cells. These dots could serve as “smart bombs” to deliver a controlled amount of drug to a particular type of cell.

Nie is working with Emory University cancer urologist Lelund Chung to use bioconjugated quantum dots as molecular probes to rapidly analyze biopsy tissue from cancer patients. The nanoparticles would be able to profile a large number of genes and proteins simultaneously, allowing physicians to individualize cancer treatments based on the molecular differences in the cancers of various patients. Even when cells appear to be similar under the microscope, their genes and proteins may be decidedly different, which explains why cancer patients with apparently similar cancers sometimes respond differently to the same treatment.

Nie and his colleagues are working on methods to deliver nanoparticles into specific kinds of tissues and cells—a process that would make cancer therapy more selective. Using near-infrared imaging technology, they are monitoring the migration of the particles within cells.

Nie is also working with tissue engineers at Georgia Tech and Emory to study the use of nanoparticles to construct new materials that could be used as improved implants for damaged tissue, such as bone, cartilage, or skin. Bio-nanomaterials provide new opportunities in cell and tissue engineering, such as cell growth/differentiation, tissue scaffolding, and controlled release of multiple growth factors.

Larry Bowie | EurekAlert!
Further information:
http://www.gatech.edu/news-room/
http://gtresearchnews.gatech.edu/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>