Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Scientist Testing Nanoparticles as Early Cancer Detection Agent

24.10.2002


Shuming Nie holds a joint appointment at Georgia Tech and Emory University


Biomedical scientist Shuming Nie is testing the use of nanoparticles called quantum dots to dramatically improve clinical diagnostic tests for the early detection of cancer. The tiny particles glow and act as markers on cells and genes, giving scientists the ability to rapidly analyze biopsy tissue from cancer patients so that doctors can provide the most effective therapy available.

Nie, a chemist by training, is an associate professor in the Wallace H. Coulter Department of Biomedical Engineering – a joint department operated by the Georgia Institute of Technology (Georgia Tech) and Emory University – and director of cancer nanotechnology at Emory’s Winship Cancer Institute.

His research focuses on the field of nanotechnolgy, in which scientists build devices and materials one atom or molecule at a time, creating structures that take on new properties by virtue of their miniature size. The basic building block of nanotechnology is a nanoparticle, and a nanometer is one-billionth of a meter, or about 100,000 times smaller than the width of a human hair.



Nanoparticles take on special properties because of their small size. For example, if you break a piece of candy into two pieces, each piece will still be sweet, but if you continue to break the candy until you reach the nanometer scale, the smaller pieces will taste completely different and have different properties.

Until recently, nanotechnology was primarily based in electronics, manufacturing, supercomputers and data storage. However Nie predicted years ago in a paper published in Science that the first major breakthroughs in the field will be in biomedical applications, such as early disease detection, imaging and drug delivery.

“Electronics may be the field most likely to derive the greatest economic benefit from nanotechnology,” Nie said. “However, much of the benefit is unlikely to occur for another 10 to 20 years, whereas the biomedical applications of nanotechnology are very close to being realized.”

Nie was recently recruited from Indiana University as a Georgia Cancer Coalition Distinguished Scientist. While at Indiana, Nie and his colleagues constructed a nanoscale semiconductor crystal. Also called a quantum dot, this particle is made of semiconductors with a limited ability to conduct electricity.

Because quantum dots are so small, their electrons are compacted, causing them to emit light or to act as a fluorescent tag. Quantum dots can bond chemically to biological molecules, enabling them to trace specific proteins within cells. Nie calls them “bioconjugated nanoparticles”—small particles that are chemically linked to biological materials.

Nanoparticle probes can be used as contrast markers in magnetic resonance imaging (MRI), in positron emission tomography (PET) for in-vivo molecular imaging, or they can be used as fluorescent tracers in optical microscopy. These tags can trace specific proteins in cells for cancer diagnosis or monitor the effectiveness of drug therapy. Because the dots glow with bright, fluorescent colors, scientists hope they will improve the sensitivity of diagnostic tests for molecules that are difficult to detect, such as those in cancer cells, or even the AIDS virus, Nie said.

“Basically, it is a barcoding technology that can encode genes and proteins,” Nie said. He plans to use bioconjugated nanoparticles for early identification, quantification, and localization of gene sequences, proteins, infectious organisms, or genetic disorders.

Many of the practical applications of nanoparticles are based on the different colors they absorb or emit in the light spectrum as their sizes change. A piece of gold, for instance, appears yellow in color, but appears red at nanoscale size. Broken down even smaller, it could appear to be blue.

Using a spectrum of six colors, in addition to four more colors in the infrared spectrum, scientists are able to finely tune nanoparticles to carry out tracking tasks traditionally accomplished using organic dyes. Nanoparticles have characteristics that are more desirable than dyes, however. Dyes fade more quickly, they can be toxic to cells, and they cannot be used together because each dye requires a different light wavelength to be visible. Nanoparticles can be illuminated using just one laser beam.

Scientists only have to vary the size of quantum dots slightly and they glow brightly in one of 10 available colors. When different sized dots are embedded in tiny beads made of a polymer material, the color of the bead can be finely tuned. Theoretically, beads with tiny permutations of color could tag a million different proteins or genetic sequences in a process called “multiplexing.”

Nie acts as a senior consultant to Bioplex Corp., a company spun out of his lab’s research in Indiana and headed by Tom Petzinger, CEO. The company, which holds the exclusive license from Indiana University for the synthesis of multiplexing dyes for imaging and detection, was recently added to the roster of start-ups at EmTech Bio, a business incubator jointly run by Georgia Tech and Emory University. Bioplex Corporation is partially owned by Pittsburgh-based LaunchCyte.

Scientists, including Nie, are currently studying methods of linking quantum dots to medical drugs or other therapeutic agents to target cancer cells. These dots could serve as “smart bombs” to deliver a controlled amount of drug to a particular type of cell.

Nie is working with Emory University cancer urologist Lelund Chung to use bioconjugated quantum dots as molecular probes to rapidly analyze biopsy tissue from cancer patients. The nanoparticles would be able to profile a large number of genes and proteins simultaneously, allowing physicians to individualize cancer treatments based on the molecular differences in the cancers of various patients. Even when cells appear to be similar under the microscope, their genes and proteins may be decidedly different, which explains why cancer patients with apparently similar cancers sometimes respond differently to the same treatment.

Nie and his colleagues are working on methods to deliver nanoparticles into specific kinds of tissues and cells—a process that would make cancer therapy more selective. Using near-infrared imaging technology, they are monitoring the migration of the particles within cells.

Nie is also working with tissue engineers at Georgia Tech and Emory to study the use of nanoparticles to construct new materials that could be used as improved implants for damaged tissue, such as bone, cartilage, or skin. Bio-nanomaterials provide new opportunities in cell and tissue engineering, such as cell growth/differentiation, tissue scaffolding, and controlled release of multiple growth factors.

Larry Bowie | EurekAlert!
Further information:
http://www.gatech.edu/news-room/
http://gtresearchnews.gatech.edu/

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>