Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomedical Scientist Testing Nanoparticles as Early Cancer Detection Agent

24.10.2002


Shuming Nie holds a joint appointment at Georgia Tech and Emory University


Biomedical scientist Shuming Nie is testing the use of nanoparticles called quantum dots to dramatically improve clinical diagnostic tests for the early detection of cancer. The tiny particles glow and act as markers on cells and genes, giving scientists the ability to rapidly analyze biopsy tissue from cancer patients so that doctors can provide the most effective therapy available.

Nie, a chemist by training, is an associate professor in the Wallace H. Coulter Department of Biomedical Engineering – a joint department operated by the Georgia Institute of Technology (Georgia Tech) and Emory University – and director of cancer nanotechnology at Emory’s Winship Cancer Institute.

His research focuses on the field of nanotechnolgy, in which scientists build devices and materials one atom or molecule at a time, creating structures that take on new properties by virtue of their miniature size. The basic building block of nanotechnology is a nanoparticle, and a nanometer is one-billionth of a meter, or about 100,000 times smaller than the width of a human hair.



Nanoparticles take on special properties because of their small size. For example, if you break a piece of candy into two pieces, each piece will still be sweet, but if you continue to break the candy until you reach the nanometer scale, the smaller pieces will taste completely different and have different properties.

Until recently, nanotechnology was primarily based in electronics, manufacturing, supercomputers and data storage. However Nie predicted years ago in a paper published in Science that the first major breakthroughs in the field will be in biomedical applications, such as early disease detection, imaging and drug delivery.

“Electronics may be the field most likely to derive the greatest economic benefit from nanotechnology,” Nie said. “However, much of the benefit is unlikely to occur for another 10 to 20 years, whereas the biomedical applications of nanotechnology are very close to being realized.”

Nie was recently recruited from Indiana University as a Georgia Cancer Coalition Distinguished Scientist. While at Indiana, Nie and his colleagues constructed a nanoscale semiconductor crystal. Also called a quantum dot, this particle is made of semiconductors with a limited ability to conduct electricity.

Because quantum dots are so small, their electrons are compacted, causing them to emit light or to act as a fluorescent tag. Quantum dots can bond chemically to biological molecules, enabling them to trace specific proteins within cells. Nie calls them “bioconjugated nanoparticles”—small particles that are chemically linked to biological materials.

Nanoparticle probes can be used as contrast markers in magnetic resonance imaging (MRI), in positron emission tomography (PET) for in-vivo molecular imaging, or they can be used as fluorescent tracers in optical microscopy. These tags can trace specific proteins in cells for cancer diagnosis or monitor the effectiveness of drug therapy. Because the dots glow with bright, fluorescent colors, scientists hope they will improve the sensitivity of diagnostic tests for molecules that are difficult to detect, such as those in cancer cells, or even the AIDS virus, Nie said.

“Basically, it is a barcoding technology that can encode genes and proteins,” Nie said. He plans to use bioconjugated nanoparticles for early identification, quantification, and localization of gene sequences, proteins, infectious organisms, or genetic disorders.

Many of the practical applications of nanoparticles are based on the different colors they absorb or emit in the light spectrum as their sizes change. A piece of gold, for instance, appears yellow in color, but appears red at nanoscale size. Broken down even smaller, it could appear to be blue.

Using a spectrum of six colors, in addition to four more colors in the infrared spectrum, scientists are able to finely tune nanoparticles to carry out tracking tasks traditionally accomplished using organic dyes. Nanoparticles have characteristics that are more desirable than dyes, however. Dyes fade more quickly, they can be toxic to cells, and they cannot be used together because each dye requires a different light wavelength to be visible. Nanoparticles can be illuminated using just one laser beam.

Scientists only have to vary the size of quantum dots slightly and they glow brightly in one of 10 available colors. When different sized dots are embedded in tiny beads made of a polymer material, the color of the bead can be finely tuned. Theoretically, beads with tiny permutations of color could tag a million different proteins or genetic sequences in a process called “multiplexing.”

Nie acts as a senior consultant to Bioplex Corp., a company spun out of his lab’s research in Indiana and headed by Tom Petzinger, CEO. The company, which holds the exclusive license from Indiana University for the synthesis of multiplexing dyes for imaging and detection, was recently added to the roster of start-ups at EmTech Bio, a business incubator jointly run by Georgia Tech and Emory University. Bioplex Corporation is partially owned by Pittsburgh-based LaunchCyte.

Scientists, including Nie, are currently studying methods of linking quantum dots to medical drugs or other therapeutic agents to target cancer cells. These dots could serve as “smart bombs” to deliver a controlled amount of drug to a particular type of cell.

Nie is working with Emory University cancer urologist Lelund Chung to use bioconjugated quantum dots as molecular probes to rapidly analyze biopsy tissue from cancer patients. The nanoparticles would be able to profile a large number of genes and proteins simultaneously, allowing physicians to individualize cancer treatments based on the molecular differences in the cancers of various patients. Even when cells appear to be similar under the microscope, their genes and proteins may be decidedly different, which explains why cancer patients with apparently similar cancers sometimes respond differently to the same treatment.

Nie and his colleagues are working on methods to deliver nanoparticles into specific kinds of tissues and cells—a process that would make cancer therapy more selective. Using near-infrared imaging technology, they are monitoring the migration of the particles within cells.

Nie is also working with tissue engineers at Georgia Tech and Emory to study the use of nanoparticles to construct new materials that could be used as improved implants for damaged tissue, such as bone, cartilage, or skin. Bio-nanomaterials provide new opportunities in cell and tissue engineering, such as cell growth/differentiation, tissue scaffolding, and controlled release of multiple growth factors.

Larry Bowie | EurekAlert!
Further information:
http://www.gatech.edu/news-room/
http://gtresearchnews.gatech.edu/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>