Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild Injury May Render Brain Cells Vulnerable to Immune Attack

24.10.2002


Drugs to protect the brains of Alzeimer’s patients could result from new finding.



Duke University Medical Center researchers have discovered that a seemingly mild "insult" to the brain could sensitize neurons to attack by immune system proteins that are otherwise protective.

The finding could explain why sufferers of Alzheimer’s and other neurodegenerative diseases significantly worsen following such insults. According to the scientists, such minimal "excitotoxic insults" could include brief seizures, mild head trauma or stroke, or even transient anoxia from fainting while standing too quickly.


The scientists believe that drugs to selectively inhibit the immune proteins could reduce the rate of neural damage in a wide range of neurodegenerative diseases. Such drugs could also protect other organs against damage from autoimmune diseases such as lupus and rheumatoid arthritis, in which the immune system attacks body tissues, said the scientists.

In an article in the October 24, 2002, Neuron, Zhi-Qi Xiong and James McNamara report studies of brain cell cultures that reveal how the set of immune proteins, called "complement," can kill neurons. The research was supported by the National Institutes of Health.

Complement proteins circulate in the blood in an inactive form, but when triggered by infection or other invaders, they form complexes that can attack the invaders.

"For a decade or more, there have been studies in which complement proteins were detected in the vicinity of senile plaques of patients with Alzheimer’s disease and also in the brain of other neurodegenerative diseases," said McNamara, who is professor and chair of the medical center’s department of neurobiology . According to McNamara, while this association suggested that complement could harm neurons, evidence also existed that complement could promote removal of a damaging protein that causes the plaques in Alzheimer’s disease.

The reality, Xiong and McNamara discovered, seems more complicated. The complement immune system pathway consists of an "early activation" pathway that can be protective in Alzheimer’s disease, and a "terminal" pathway, in which the proteins combine to create a "membrane attack complex." It is the terminal pathway and this complex that damages neurons sensitized to complement attack by mild brain insult, said McNamara.

"Basically, we have discovered how an insult like transient ischemic attacks, minimal drop in blood pressure or a minimal blow to the head could facilitate the transition from the early activation pathway to the terminal membrane attack pathway, and transform a protective effect into a damaging effect on the brain," said McNamara.

Initial clues that complement could attack brain cells came from the Duke scientists’ earlier studies of a rare childhood brain disease called Rasmussen’s encephalitis.

"We observed that in this autoimmune disease, even though the immune system is constantly attacking the brain, the progressive loss of neurological function in these children occurred in a stepwise fashion, following flurries of seizures," said McNamara. The scientists found that the brains of children suffering from the disease showed evidence of activation of complement, and the complement proteins were concentrated in the neurons. Also, said McNamara, the scientists’ studies of an animal model of the disease showed similar attack by complement.

What’s more, he said, studies by other researchers had demonstrated in animal models and cell cultures that fleeting insults can damage neurons by causing an "excitotoxic" overload of the neurotransmitter glutamate.

Earlier brain tissue culture studies had shown that complement could damage brain cells called astrocytes preferentially over neurons, said McNamara.

"This didn’t make sense," said McNamara. "In our tissue culture studies, the astrocytes were preferentially damaged, but in brains, the complement was deposited on neurons. And so we reasoned that perhaps there was an interaction between the excessive excitation mediated by glutamate and a neuron’s sensitivity to attack by complement."

In their experiments reported in Neuron, Xiong and McNamara exposed cultures of neurons and astrocytes, first to modest levels of glutamate, as might be generated by a mild insult to the brain. When they next exposed these same cultures to activated complement proteins, the neurons were preferentially killed.

Their studies also showed that the damage was specifically caused by the membrane attack pathway of complement and not by the early activation pathway. And, they found that the glutamate treatment sensitized neurons, but not astrocytes, to attack by complement.

Finally, the scientists found that the excitotoxic sensitization of neurons required both calcium and chemicals called "reactive oxygen species." While the scientists do not understand these requirements, said McNamara, they believe that the finding might offer further clues to the metabolic pathway by which the neuron’s defenses against complement are compromised. Importantly, said McNamara, their finding raises the possibility of protecting the brains of patients with neurodegenerative disease.

"The identification of a small-molecule inhibitor of the terminal pathway of complement may prove to be tremendously beneficial to patients with late-stage neurodegenerative disease, reducing the rate of brain injury," he said.

What’s more, said McNamara, such drugs "could be helpful in diseases of many other organs, not just the brain, in which inappropriate activation of complement damages the tissues, like rheumatoid arthritis, lupus and others." McNamara emphasized the importance of basic studies of rare diseases to such discoveries.

"I think this is one of countless examples in human biology in which study of a rare disease, in this case Rasmussen’s encephalitis, sheds light on mechanisms of common diseases," he said. "We would have been unlikely to have gained this invaluable insight into the immune system and the brain, had we not been studying Rasmussen’s encephalitis."


For additional information, contact:
Dennis Meredith | phone: (919) 681-8054 | email: dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>