Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild Injury May Render Brain Cells Vulnerable to Immune Attack

24.10.2002


Drugs to protect the brains of Alzeimer’s patients could result from new finding.



Duke University Medical Center researchers have discovered that a seemingly mild "insult" to the brain could sensitize neurons to attack by immune system proteins that are otherwise protective.

The finding could explain why sufferers of Alzheimer’s and other neurodegenerative diseases significantly worsen following such insults. According to the scientists, such minimal "excitotoxic insults" could include brief seizures, mild head trauma or stroke, or even transient anoxia from fainting while standing too quickly.


The scientists believe that drugs to selectively inhibit the immune proteins could reduce the rate of neural damage in a wide range of neurodegenerative diseases. Such drugs could also protect other organs against damage from autoimmune diseases such as lupus and rheumatoid arthritis, in which the immune system attacks body tissues, said the scientists.

In an article in the October 24, 2002, Neuron, Zhi-Qi Xiong and James McNamara report studies of brain cell cultures that reveal how the set of immune proteins, called "complement," can kill neurons. The research was supported by the National Institutes of Health.

Complement proteins circulate in the blood in an inactive form, but when triggered by infection or other invaders, they form complexes that can attack the invaders.

"For a decade or more, there have been studies in which complement proteins were detected in the vicinity of senile plaques of patients with Alzheimer’s disease and also in the brain of other neurodegenerative diseases," said McNamara, who is professor and chair of the medical center’s department of neurobiology . According to McNamara, while this association suggested that complement could harm neurons, evidence also existed that complement could promote removal of a damaging protein that causes the plaques in Alzheimer’s disease.

The reality, Xiong and McNamara discovered, seems more complicated. The complement immune system pathway consists of an "early activation" pathway that can be protective in Alzheimer’s disease, and a "terminal" pathway, in which the proteins combine to create a "membrane attack complex." It is the terminal pathway and this complex that damages neurons sensitized to complement attack by mild brain insult, said McNamara.

"Basically, we have discovered how an insult like transient ischemic attacks, minimal drop in blood pressure or a minimal blow to the head could facilitate the transition from the early activation pathway to the terminal membrane attack pathway, and transform a protective effect into a damaging effect on the brain," said McNamara.

Initial clues that complement could attack brain cells came from the Duke scientists’ earlier studies of a rare childhood brain disease called Rasmussen’s encephalitis.

"We observed that in this autoimmune disease, even though the immune system is constantly attacking the brain, the progressive loss of neurological function in these children occurred in a stepwise fashion, following flurries of seizures," said McNamara. The scientists found that the brains of children suffering from the disease showed evidence of activation of complement, and the complement proteins were concentrated in the neurons. Also, said McNamara, the scientists’ studies of an animal model of the disease showed similar attack by complement.

What’s more, he said, studies by other researchers had demonstrated in animal models and cell cultures that fleeting insults can damage neurons by causing an "excitotoxic" overload of the neurotransmitter glutamate.

Earlier brain tissue culture studies had shown that complement could damage brain cells called astrocytes preferentially over neurons, said McNamara.

"This didn’t make sense," said McNamara. "In our tissue culture studies, the astrocytes were preferentially damaged, but in brains, the complement was deposited on neurons. And so we reasoned that perhaps there was an interaction between the excessive excitation mediated by glutamate and a neuron’s sensitivity to attack by complement."

In their experiments reported in Neuron, Xiong and McNamara exposed cultures of neurons and astrocytes, first to modest levels of glutamate, as might be generated by a mild insult to the brain. When they next exposed these same cultures to activated complement proteins, the neurons were preferentially killed.

Their studies also showed that the damage was specifically caused by the membrane attack pathway of complement and not by the early activation pathway. And, they found that the glutamate treatment sensitized neurons, but not astrocytes, to attack by complement.

Finally, the scientists found that the excitotoxic sensitization of neurons required both calcium and chemicals called "reactive oxygen species." While the scientists do not understand these requirements, said McNamara, they believe that the finding might offer further clues to the metabolic pathway by which the neuron’s defenses against complement are compromised. Importantly, said McNamara, their finding raises the possibility of protecting the brains of patients with neurodegenerative disease.

"The identification of a small-molecule inhibitor of the terminal pathway of complement may prove to be tremendously beneficial to patients with late-stage neurodegenerative disease, reducing the rate of brain injury," he said.

What’s more, said McNamara, such drugs "could be helpful in diseases of many other organs, not just the brain, in which inappropriate activation of complement damages the tissues, like rheumatoid arthritis, lupus and others." McNamara emphasized the importance of basic studies of rare diseases to such discoveries.

"I think this is one of countless examples in human biology in which study of a rare disease, in this case Rasmussen’s encephalitis, sheds light on mechanisms of common diseases," he said. "We would have been unlikely to have gained this invaluable insight into the immune system and the brain, had we not been studying Rasmussen’s encephalitis."


For additional information, contact:
Dennis Meredith | phone: (919) 681-8054 | email: dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>