Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mild Injury May Render Brain Cells Vulnerable to Immune Attack

24.10.2002


Drugs to protect the brains of Alzeimer’s patients could result from new finding.



Duke University Medical Center researchers have discovered that a seemingly mild "insult" to the brain could sensitize neurons to attack by immune system proteins that are otherwise protective.

The finding could explain why sufferers of Alzheimer’s and other neurodegenerative diseases significantly worsen following such insults. According to the scientists, such minimal "excitotoxic insults" could include brief seizures, mild head trauma or stroke, or even transient anoxia from fainting while standing too quickly.


The scientists believe that drugs to selectively inhibit the immune proteins could reduce the rate of neural damage in a wide range of neurodegenerative diseases. Such drugs could also protect other organs against damage from autoimmune diseases such as lupus and rheumatoid arthritis, in which the immune system attacks body tissues, said the scientists.

In an article in the October 24, 2002, Neuron, Zhi-Qi Xiong and James McNamara report studies of brain cell cultures that reveal how the set of immune proteins, called "complement," can kill neurons. The research was supported by the National Institutes of Health.

Complement proteins circulate in the blood in an inactive form, but when triggered by infection or other invaders, they form complexes that can attack the invaders.

"For a decade or more, there have been studies in which complement proteins were detected in the vicinity of senile plaques of patients with Alzheimer’s disease and also in the brain of other neurodegenerative diseases," said McNamara, who is professor and chair of the medical center’s department of neurobiology . According to McNamara, while this association suggested that complement could harm neurons, evidence also existed that complement could promote removal of a damaging protein that causes the plaques in Alzheimer’s disease.

The reality, Xiong and McNamara discovered, seems more complicated. The complement immune system pathway consists of an "early activation" pathway that can be protective in Alzheimer’s disease, and a "terminal" pathway, in which the proteins combine to create a "membrane attack complex." It is the terminal pathway and this complex that damages neurons sensitized to complement attack by mild brain insult, said McNamara.

"Basically, we have discovered how an insult like transient ischemic attacks, minimal drop in blood pressure or a minimal blow to the head could facilitate the transition from the early activation pathway to the terminal membrane attack pathway, and transform a protective effect into a damaging effect on the brain," said McNamara.

Initial clues that complement could attack brain cells came from the Duke scientists’ earlier studies of a rare childhood brain disease called Rasmussen’s encephalitis.

"We observed that in this autoimmune disease, even though the immune system is constantly attacking the brain, the progressive loss of neurological function in these children occurred in a stepwise fashion, following flurries of seizures," said McNamara. The scientists found that the brains of children suffering from the disease showed evidence of activation of complement, and the complement proteins were concentrated in the neurons. Also, said McNamara, the scientists’ studies of an animal model of the disease showed similar attack by complement.

What’s more, he said, studies by other researchers had demonstrated in animal models and cell cultures that fleeting insults can damage neurons by causing an "excitotoxic" overload of the neurotransmitter glutamate.

Earlier brain tissue culture studies had shown that complement could damage brain cells called astrocytes preferentially over neurons, said McNamara.

"This didn’t make sense," said McNamara. "In our tissue culture studies, the astrocytes were preferentially damaged, but in brains, the complement was deposited on neurons. And so we reasoned that perhaps there was an interaction between the excessive excitation mediated by glutamate and a neuron’s sensitivity to attack by complement."

In their experiments reported in Neuron, Xiong and McNamara exposed cultures of neurons and astrocytes, first to modest levels of glutamate, as might be generated by a mild insult to the brain. When they next exposed these same cultures to activated complement proteins, the neurons were preferentially killed.

Their studies also showed that the damage was specifically caused by the membrane attack pathway of complement and not by the early activation pathway. And, they found that the glutamate treatment sensitized neurons, but not astrocytes, to attack by complement.

Finally, the scientists found that the excitotoxic sensitization of neurons required both calcium and chemicals called "reactive oxygen species." While the scientists do not understand these requirements, said McNamara, they believe that the finding might offer further clues to the metabolic pathway by which the neuron’s defenses against complement are compromised. Importantly, said McNamara, their finding raises the possibility of protecting the brains of patients with neurodegenerative disease.

"The identification of a small-molecule inhibitor of the terminal pathway of complement may prove to be tremendously beneficial to patients with late-stage neurodegenerative disease, reducing the rate of brain injury," he said.

What’s more, said McNamara, such drugs "could be helpful in diseases of many other organs, not just the brain, in which inappropriate activation of complement damages the tissues, like rheumatoid arthritis, lupus and others." McNamara emphasized the importance of basic studies of rare diseases to such discoveries.

"I think this is one of countless examples in human biology in which study of a rare disease, in this case Rasmussen’s encephalitis, sheds light on mechanisms of common diseases," he said. "We would have been unlikely to have gained this invaluable insight into the immune system and the brain, had we not been studying Rasmussen’s encephalitis."


For additional information, contact:
Dennis Meredith | phone: (919) 681-8054 | email: dennis.meredith@duke.edu

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>