Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy may protect brain against stroke, Parkinson’s and Alzheimer’s

22.10.2002


Researchers at the National Institutes of Health have developed several drug candidates that show promise in animal studies in protecting the brain against sudden damage from stroke, with the potential for fighting chronic neurodegenerative conditions like Parkinson’s and Alzheimer’s disease. The drugs, called p53 inhibitors, attack a key protein involved in nerve cell death and represent a new strategy for preserving brain function following sudden injury or chronic disease, according to the researchers.



Their findings will appear in the Nov. 7 print issue of the Journal of Medicinal Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

"This is a completely new therapeutic strategy for Alzheimer’s and other neurodegenerative diseases, which warrants further assessment to allow it to move to clinical trials," says Nigel H. Greig, Ph.D., a researcher with the National Institute on Aging’s Intramural Research Program in Baltimore, Md., and chief investigator for the study. "If it works, it could provide a new treatment approach for a wide range of neurological diseases."


The research is limited to cell and animal studies for now, but if all goes well, human clinical trials could begin in two to three years, Greig says. The new drugs could provide relief for millions of Americans who suffer from mental and physical decline due to neurological damage and offer hope to those who are at increased risk due to advancing age.

Drugs currently used to treat neurological disease and injuries provide temporary relief of symptoms but do not stop or slow the underlying neurodegenerative process. The new experimental drugs, by contrast, target the common, underlying cause of this destructive process: the death of brain cells.

"By turning off cell death, you rescue brain cells from lethal insult," Greig says. He compares other drugs to "bandages" that help alleviate brain damage after it occurs, whereas p53 inhibitors act as "seat belts" that help prevent damage from occurring in the first place.

The main target of these drugs, p53, is a common protein found in cells that triggers the biochemical cascade of events leading to cell death. As cells die, new, healthy ones normally replace them. But in the diseased or injured brain, cell death can cause devastating damage, as brain cells cannot regenerate. The researchers theorized that by inactivating the protein temporarily, further brain damage might be prevented.

The researchers identified one compound, called pifithrin-alpha (PFT), which was shown in previous studies to inhibit p53. They then designed, synthesized and tested analogues of this compound to see whether they would work against cultured brain cells and animal models of neurodegenerative disease.

In laboratory tests, brain cells exposed to a series of toxic chemicals survived longer when given the inhibitor compound. In subsequent tests using a rodent model of stroke, the severity of stroke damage was significantly decreased in animals that received the inhibitor compounds compared to those that did not receive it, the researchers found.

Evidence for the drugs’ potential effectiveness against chronic neurodegenerative diseases is growing. In a related study, the researchers found that the drugs appear to prevent nerve damage in a mouse model of Parkinson’s disease.

In another study, the researchers showed that the compounds protect brain cells against beta amyloid, a toxic protein associated with Alzheimer’s disease. They are now planning to test the experimental drugs in animal models of the disease.

The new drugs will probably first be used to treat stroke, brain injury (from sports and motor vehicle accidents) or other conditions characterized by sudden brain trauma, the researchers say. If the compounds prove safe, they could later be extended to long-term diseases like Alzheimer’s, Parkinson’s, and Lou Gehrig’s (amyotrophic lateral sclerosis, or ALS).

The researchers caution that they need to first make sure that the inhibitors don’t cause side effects in other cells of the body. Other studies show that mice that have no p53 have an increased incidence of cancer, while those that have high levels of p53 experience premature aging.

"You have to have just the right balance," Greig says. Ideally, the compounds will work only temporarily and will then be broken down by the body.

Greig and his associates are currently testing various drug analogues to see which ones work the best. Once developed, the drugs can either be used as an oral pill or intravenously, depending on how quickly they need to be administered.

The National Institute on Aging provided funding for this study.

Dr. Greig’s associates in this study were Xiaoxiang Zhu, Ph.D., Qian-sheng Yu, Ph.D., Roy G. Cutler, M.S., Carsten W. Culmsee, Ph.D., Harold W. Holloway, B.S., Mark P. Mattson, Ph.D., all of the NIA’s Intramural Research Program; and Debomoy K. Lahiri, Ph.D., of Indiana University School of Medicine in Indianapolis, Ind.


The online version of the research paper cited above was initially published Oct. 3 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Nigel H. Greig, Ph.D., is chief of the Drug Design & Development Section in the Laboratory of Neurosciences at the National Institute on Aging’s Intramural Research Program in Baltimore, Md.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>