Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy may protect brain against stroke, Parkinson’s and Alzheimer’s

22.10.2002


Researchers at the National Institutes of Health have developed several drug candidates that show promise in animal studies in protecting the brain against sudden damage from stroke, with the potential for fighting chronic neurodegenerative conditions like Parkinson’s and Alzheimer’s disease. The drugs, called p53 inhibitors, attack a key protein involved in nerve cell death and represent a new strategy for preserving brain function following sudden injury or chronic disease, according to the researchers.



Their findings will appear in the Nov. 7 print issue of the Journal of Medicinal Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

"This is a completely new therapeutic strategy for Alzheimer’s and other neurodegenerative diseases, which warrants further assessment to allow it to move to clinical trials," says Nigel H. Greig, Ph.D., a researcher with the National Institute on Aging’s Intramural Research Program in Baltimore, Md., and chief investigator for the study. "If it works, it could provide a new treatment approach for a wide range of neurological diseases."


The research is limited to cell and animal studies for now, but if all goes well, human clinical trials could begin in two to three years, Greig says. The new drugs could provide relief for millions of Americans who suffer from mental and physical decline due to neurological damage and offer hope to those who are at increased risk due to advancing age.

Drugs currently used to treat neurological disease and injuries provide temporary relief of symptoms but do not stop or slow the underlying neurodegenerative process. The new experimental drugs, by contrast, target the common, underlying cause of this destructive process: the death of brain cells.

"By turning off cell death, you rescue brain cells from lethal insult," Greig says. He compares other drugs to "bandages" that help alleviate brain damage after it occurs, whereas p53 inhibitors act as "seat belts" that help prevent damage from occurring in the first place.

The main target of these drugs, p53, is a common protein found in cells that triggers the biochemical cascade of events leading to cell death. As cells die, new, healthy ones normally replace them. But in the diseased or injured brain, cell death can cause devastating damage, as brain cells cannot regenerate. The researchers theorized that by inactivating the protein temporarily, further brain damage might be prevented.

The researchers identified one compound, called pifithrin-alpha (PFT), which was shown in previous studies to inhibit p53. They then designed, synthesized and tested analogues of this compound to see whether they would work against cultured brain cells and animal models of neurodegenerative disease.

In laboratory tests, brain cells exposed to a series of toxic chemicals survived longer when given the inhibitor compound. In subsequent tests using a rodent model of stroke, the severity of stroke damage was significantly decreased in animals that received the inhibitor compounds compared to those that did not receive it, the researchers found.

Evidence for the drugs’ potential effectiveness against chronic neurodegenerative diseases is growing. In a related study, the researchers found that the drugs appear to prevent nerve damage in a mouse model of Parkinson’s disease.

In another study, the researchers showed that the compounds protect brain cells against beta amyloid, a toxic protein associated with Alzheimer’s disease. They are now planning to test the experimental drugs in animal models of the disease.

The new drugs will probably first be used to treat stroke, brain injury (from sports and motor vehicle accidents) or other conditions characterized by sudden brain trauma, the researchers say. If the compounds prove safe, they could later be extended to long-term diseases like Alzheimer’s, Parkinson’s, and Lou Gehrig’s (amyotrophic lateral sclerosis, or ALS).

The researchers caution that they need to first make sure that the inhibitors don’t cause side effects in other cells of the body. Other studies show that mice that have no p53 have an increased incidence of cancer, while those that have high levels of p53 experience premature aging.

"You have to have just the right balance," Greig says. Ideally, the compounds will work only temporarily and will then be broken down by the body.

Greig and his associates are currently testing various drug analogues to see which ones work the best. Once developed, the drugs can either be used as an oral pill or intravenously, depending on how quickly they need to be administered.

The National Institute on Aging provided funding for this study.

Dr. Greig’s associates in this study were Xiaoxiang Zhu, Ph.D., Qian-sheng Yu, Ph.D., Roy G. Cutler, M.S., Carsten W. Culmsee, Ph.D., Harold W. Holloway, B.S., Mark P. Mattson, Ph.D., all of the NIA’s Intramural Research Program; and Debomoy K. Lahiri, Ph.D., of Indiana University School of Medicine in Indianapolis, Ind.


The online version of the research paper cited above was initially published Oct. 3 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Nigel H. Greig, Ph.D., is chief of the Drug Design & Development Section in the Laboratory of Neurosciences at the National Institute on Aging’s Intramural Research Program in Baltimore, Md.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>