Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy may protect brain against stroke, Parkinson’s and Alzheimer’s

22.10.2002


Researchers at the National Institutes of Health have developed several drug candidates that show promise in animal studies in protecting the brain against sudden damage from stroke, with the potential for fighting chronic neurodegenerative conditions like Parkinson’s and Alzheimer’s disease. The drugs, called p53 inhibitors, attack a key protein involved in nerve cell death and represent a new strategy for preserving brain function following sudden injury or chronic disease, according to the researchers.



Their findings will appear in the Nov. 7 print issue of the Journal of Medicinal Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

"This is a completely new therapeutic strategy for Alzheimer’s and other neurodegenerative diseases, which warrants further assessment to allow it to move to clinical trials," says Nigel H. Greig, Ph.D., a researcher with the National Institute on Aging’s Intramural Research Program in Baltimore, Md., and chief investigator for the study. "If it works, it could provide a new treatment approach for a wide range of neurological diseases."


The research is limited to cell and animal studies for now, but if all goes well, human clinical trials could begin in two to three years, Greig says. The new drugs could provide relief for millions of Americans who suffer from mental and physical decline due to neurological damage and offer hope to those who are at increased risk due to advancing age.

Drugs currently used to treat neurological disease and injuries provide temporary relief of symptoms but do not stop or slow the underlying neurodegenerative process. The new experimental drugs, by contrast, target the common, underlying cause of this destructive process: the death of brain cells.

"By turning off cell death, you rescue brain cells from lethal insult," Greig says. He compares other drugs to "bandages" that help alleviate brain damage after it occurs, whereas p53 inhibitors act as "seat belts" that help prevent damage from occurring in the first place.

The main target of these drugs, p53, is a common protein found in cells that triggers the biochemical cascade of events leading to cell death. As cells die, new, healthy ones normally replace them. But in the diseased or injured brain, cell death can cause devastating damage, as brain cells cannot regenerate. The researchers theorized that by inactivating the protein temporarily, further brain damage might be prevented.

The researchers identified one compound, called pifithrin-alpha (PFT), which was shown in previous studies to inhibit p53. They then designed, synthesized and tested analogues of this compound to see whether they would work against cultured brain cells and animal models of neurodegenerative disease.

In laboratory tests, brain cells exposed to a series of toxic chemicals survived longer when given the inhibitor compound. In subsequent tests using a rodent model of stroke, the severity of stroke damage was significantly decreased in animals that received the inhibitor compounds compared to those that did not receive it, the researchers found.

Evidence for the drugs’ potential effectiveness against chronic neurodegenerative diseases is growing. In a related study, the researchers found that the drugs appear to prevent nerve damage in a mouse model of Parkinson’s disease.

In another study, the researchers showed that the compounds protect brain cells against beta amyloid, a toxic protein associated with Alzheimer’s disease. They are now planning to test the experimental drugs in animal models of the disease.

The new drugs will probably first be used to treat stroke, brain injury (from sports and motor vehicle accidents) or other conditions characterized by sudden brain trauma, the researchers say. If the compounds prove safe, they could later be extended to long-term diseases like Alzheimer’s, Parkinson’s, and Lou Gehrig’s (amyotrophic lateral sclerosis, or ALS).

The researchers caution that they need to first make sure that the inhibitors don’t cause side effects in other cells of the body. Other studies show that mice that have no p53 have an increased incidence of cancer, while those that have high levels of p53 experience premature aging.

"You have to have just the right balance," Greig says. Ideally, the compounds will work only temporarily and will then be broken down by the body.

Greig and his associates are currently testing various drug analogues to see which ones work the best. Once developed, the drugs can either be used as an oral pill or intravenously, depending on how quickly they need to be administered.

The National Institute on Aging provided funding for this study.

Dr. Greig’s associates in this study were Xiaoxiang Zhu, Ph.D., Qian-sheng Yu, Ph.D., Roy G. Cutler, M.S., Carsten W. Culmsee, Ph.D., Harold W. Holloway, B.S., Mark P. Mattson, Ph.D., all of the NIA’s Intramural Research Program; and Debomoy K. Lahiri, Ph.D., of Indiana University School of Medicine in Indianapolis, Ind.


The online version of the research paper cited above was initially published Oct. 3 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Nigel H. Greig, Ph.D., is chief of the Drug Design & Development Section in the Laboratory of Neurosciences at the National Institute on Aging’s Intramural Research Program in Baltimore, Md.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>