Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting more mileage out of cord blood

22.10.2002


Blood from human umbilical cords is a rich source of hematopoeitic stem cells, the progenitors that can reconstitute all of the different cell types in our blood, including oxygen-carrying red blood cells and white blood cells that are our major defense against infections. Cord blood contains a higher percentage of stem cells than adult bone marrow (another source of blood stem cells), and has several additional advantages: cord blood stem cells divide faster than stem cells from bone marrow and have longer telomeres. In addition, cord blood contains fewer immune cells, and those present have not yet undergone the extensive education process that allows them to distinguish between self and non-self. This is important in the context of transplantation, where host cells can attack donor cells and vice versa (a process known as graft-versus-host disease that is responsible for many deaths after bone marrow transplantation).



One obstacle to using cord blood more routinely as a source of stem cells in transplantation patients is the amount of blood required. Clinical trials have established that higher numbers of blood cells per kilogram of body weight of the recipient are associated with improved transplantation outcome. However, the amount of blood cells collected from cords is often not sufficient for an adult recipient. Scientists have therefore attempted to culture and expand cord blood-derived cells before transplanting them into patients. As they report in the October 21 issue of the Journal of Clinical Investigation, Irwin Bernstein and colleagues (Fred Hutchinson Cancer Center, Seattle, and University of Washington, Seattle), have been successful in doing so. Exposing human cord blood to a particular molecule called Delta-1 under defined culture conditions resulted in an over 100-fold increase in the number of the most immature stem cells. Other progenitors that maintained the potential to differentiate into multiple different blood cell types were also expanded.

When the scientists harvested the cells after the expansion and transplanted them into immuno-deficient mice (who in many ways resemble leukemia patients who have undergone radiation treatment prior to a bone-marrow transplant), they found that the cultured cells were more potent in reconstituting the recipients blood and immune cell systems that non-cultured cells or those cultured in the absence of Delta-1.


These results demonstrate that it is possible to increase the number of stem cells derived from cord blood in culture, and suggests that such strategies could be employed to increase the utility of cord blood as a source for human transplantation.


CONTACT:
Irwin D. Bernstein
Dept. Of Pediatric Oncology
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N
Seattle, WA 98109
PHONE: 206-667-4886
FAX: 206-667-6084
E-mail: ibernste@fhcrc.org

Brooke Grindlinger, PhD | EurekAlert!

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>