Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting more mileage out of cord blood

22.10.2002


Blood from human umbilical cords is a rich source of hematopoeitic stem cells, the progenitors that can reconstitute all of the different cell types in our blood, including oxygen-carrying red blood cells and white blood cells that are our major defense against infections. Cord blood contains a higher percentage of stem cells than adult bone marrow (another source of blood stem cells), and has several additional advantages: cord blood stem cells divide faster than stem cells from bone marrow and have longer telomeres. In addition, cord blood contains fewer immune cells, and those present have not yet undergone the extensive education process that allows them to distinguish between self and non-self. This is important in the context of transplantation, where host cells can attack donor cells and vice versa (a process known as graft-versus-host disease that is responsible for many deaths after bone marrow transplantation).



One obstacle to using cord blood more routinely as a source of stem cells in transplantation patients is the amount of blood required. Clinical trials have established that higher numbers of blood cells per kilogram of body weight of the recipient are associated with improved transplantation outcome. However, the amount of blood cells collected from cords is often not sufficient for an adult recipient. Scientists have therefore attempted to culture and expand cord blood-derived cells before transplanting them into patients. As they report in the October 21 issue of the Journal of Clinical Investigation, Irwin Bernstein and colleagues (Fred Hutchinson Cancer Center, Seattle, and University of Washington, Seattle), have been successful in doing so. Exposing human cord blood to a particular molecule called Delta-1 under defined culture conditions resulted in an over 100-fold increase in the number of the most immature stem cells. Other progenitors that maintained the potential to differentiate into multiple different blood cell types were also expanded.

When the scientists harvested the cells after the expansion and transplanted them into immuno-deficient mice (who in many ways resemble leukemia patients who have undergone radiation treatment prior to a bone-marrow transplant), they found that the cultured cells were more potent in reconstituting the recipients blood and immune cell systems that non-cultured cells or those cultured in the absence of Delta-1.


These results demonstrate that it is possible to increase the number of stem cells derived from cord blood in culture, and suggests that such strategies could be employed to increase the utility of cord blood as a source for human transplantation.


CONTACT:
Irwin D. Bernstein
Dept. Of Pediatric Oncology
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N
Seattle, WA 98109
PHONE: 206-667-4886
FAX: 206-667-6084
E-mail: ibernste@fhcrc.org

Brooke Grindlinger, PhD | EurekAlert!

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>