Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first gene therapy for cystic fibrosis targets lung stem cells?

21.10.2002


PhD student Maria Limberis inspects a CF mouse


The genetically – inherited disease cystic fibrosis causes severe, unrelenting lung disease in children and adults worldwide. Approximately 1 in 2,500 infants are born with this disease and only half survive past 30 years of age.

Now, researchers from the Women’s and Children’s Hospital, Adelaide have developed a novel system of gene therapy for lungs affected by cystic fibrosis, involving a natural compound found in our lungs which ’conditions’ lung airways to allow cells to take up the therapeutic gene.

Our lungs have developed highly effective ways to protect us from allergens, irritants, dust, viruses and other foreign particles. But according to principal medical scientist in Pulmonary Medicine, Dr David Parsons these defences also hinder effective gene therapy in our lungs.



"Using a mouse model of cystic fibrosis Maria Limberis, a PhD student in our lab, has helped us develop a system to briefly overcome these defences. As the cells lining the mouse nose behave in much the same way as human lung cells – this enables us to use the nose airways in mice to easily develop and test out gene therapy treatments.

"By instilling a single dose of a detergent found naturally in low amounts in our lungs, we are able to ’condition’ cells to take up the gene needed to treat cystic fibrosis.

" Viruses are very good at transferring their genetic material into cells and we make use of this by getting useful parts of an inactive and highly-modified human immunodeficiency virus type 1 (HIV 1) to safely transfer the cystic fibrosis gene into cells. We use this modified HIV because it is one of the few viruses that can give long-lasting gene transfer," Dr Parsons says.

Using this system, the research team has shown, for the first time in a living animal, that long-lived gene therapy for cystic fibrosis is possible. Not only do the airway cells take up the correcting gene, but these cells also show substantial recovery from the cystic fibrosis defect for, so far, at least 110 days.

"Airway cells are replaced every three months so our findings are particularly exciting because they imply we are in fact targeting airway stem cells through this approach - some of the therapeutic gene must have been passed on from these parent stem cells to their daughter cells for the effect to persist beyond three months," Dr Parsons says.

Research funding is now being sought to establish the most effective dose and timing for giving the detergent together with rigorous safety checks on the highly modified HIV-1 based virus particle used for the gene transfer.

Another senior member of the team, molecular biologist Dr Don Anson, explains, "Last year we published a method which vastly increases the safety with which HIV-1 can be modified and used to transfer genes without causing disease.

"We are now working to further improve on this method in order that patients and their families will feel totally confident to eventually take part in human trials of this gene therapy for cystic fibrosis," Dr Anson says.


The work from this research is to be published in Human Gene Therapy, volume 13 #16 on October 20.

Members of the Research Team are:
Dr David Parsons (Medical Scientist, Pulmonary Medicine)
Dr Don Anson (Senior Molecular Biologist, Chemical Pathology)
Dr Maria Fuller (Molecular Biologist, Chemical Pathology)
Ms Maria Limberis (PhD student, Pulmonary Medicine)

Dr Edna Bates | EurekAlert!
Further information:
http://www.wch.sa.gov.au/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>