Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-causing genetic mutations in sperm increase with men’s age

18.10.2002


Scientists from the McKusick-Nathans Institute for Genetic Medicine at Johns Hopkins may have discovered why a rare genetic disease is more common in children born to older fathers. The disease, Apert syndrome, leads to webbed fingers and early fusion of the skull bones and must be corrected by surgery.



While Apert syndrome itself affects only 1 in 160,000 births, the scientists believe their findings could extend to many of the 20 or so other genetic conditions similarly linked to older fathers. The researchers are scheduled to present their findings Oct. 17 at the annual meeting of the American Society for Human Genetics in Baltimore.

"It makes sense that the mutations causing these diseases would occur more frequently in older men, and indeed that’s what we saw for Apert syndrome," says Ethylin Jabs, M.D., director of the Center for Craniofacial Development and Disorders at Johns Hopkins.


Importantly, disorders linked to advancing paternal age begin to increase rapidly at about the same time as maternal risks increase -- age 33 to 35. Until now, the only evidence for paternal age effects has come from determining how many children with these diseases are born to fathers of various ages.

To obtain the first genetic explanation for these effects, the scientists studied sperm from about 60 men of various ages and looked for two genetic changes responsible for 99 percent of the cases of Apert syndrome. They found that men over 50 were, on average, three times as likely as men under 30 to have sperm with at least one of these changes. The mutations were not more common in blood samples as men aged.

The scientists say it’s likely that the number of cell divisions that go into making a sperm plays a large role in the link between Apert syndrome and paternal age, and represents a fundamental difference between how aging egg and sperm can impact the health of a child.

"In the men we studied, these mutations had not been inherited, but rather collected over time in the reservoir of primitive cells that become sperm," says first author Rivka Glaser, a graduate student in human genetics at the Johns Hopkins School of Medicine.

Cells that mature into eggs are essentially frozen in time from puberty until the time the egg is signaled to develop. Because of the stage at which they are "frozen," the most likely error in an egg is to have an abnormal partitioning of chromosomes, producing an egg with an extra copy or a missing copy, Glaser says. For example, in Down syndrome, an extra copy of chromosome 21 is inherited from the mother.

Sperm, on the other hand, are continually produced throughout a male’s lifetime from a reservoir of primitive cells. These primitive cells, like other kinds of so-called stem cells, can either replicate themselves or take a step closer to becoming a sperm, a process called differentiation. All told, these cells divide every 21 days after puberty, and at each cell division the opportunity exists for an error in copying the DNA.

"Literally hundreds of millions of sperm are made in each batch, so in most cases there are still many normal sperm available," says Jabs, also a professor of pediatrics. Their study showed that "high levels" of mutations among men who had no children with Apert syndrome amounted to roughly 3 sperm with the mutation among 100,000 sperm.

If an error is made in any of the steps toward becoming a sperm, the only cells affected are the resulting sperm for that batch. However, if an error appears in a primitive cell as it replicates itself and the mistake isn’t fixed, the mutation will continue to be passed on to all of its progeny, including subsequent primitive cells and other batches of semen.

As men age, more of these primitive cells have collected mutations that cause Apert syndrome, leading to more sperm with the mutations in each batch of semen, the scientists suggest. The risk of having a child with Apert is about six times higher for a man age 52 than for someone who’s 27.


Authors on the study are Glaser, Jabs, and Rebecca Schulman, of Johns Hopkins School of Medicine, and Karl Broman, of the Johns Hopkins Bloomberg School of Public Health.

Abstract # 1127 "Molecular evidence for the paternal age effect in sperm." R. Glaser, et al.

Joanna Downer | EurekAlert!
Further information:
http://www.ashg.org
http://www.hopkinsmedicine.org/craniofacial/Home/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>