Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sauerkraut contains anticancer compound

17.10.2002


Baseball fans might want to add a little more sauerkraut to their hot dogs: Researchers have identified compounds in the tangy topping, made from fermented cabbage, that may fight cancer. Their study will appear in the Oct. 23 print issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.



The researchers found that the process of fermenting cabbage produces isothiocyanates, a class of compounds that have been identified in previous studies as potential cancer-fighting agents. In animal studies, the compounds appear to prevent the growth of cancer, particularly in the breast, colon, lung and liver, they say. No one knows yet whether the compounds, which are not found in raw cabbage, have a similar effect in humans. Further studies are needed, they add.

"We are finding that fermented cabbage could be healthier than raw or cooked cabbage, especially for fighting cancer," says Eeva-Liisa Ryhanen, Ph.D., research manager of MTT Agrifood Research Finland, located in Jokioinen, Finland. "We are now working on ways of optimizing the fermentation process to make it even healthier so that consumers will eat more [sauerkraut]."


In the current study, the researchers analyzed a variety of biologically active compounds in sauerkraut. Their samples were derived from white cabbage that was fermented.

Although raw cabbage is normally rich in a compound called glucosinolate, the researchers found that during the fermentation process enzymes are released that completely decompose the compound into several breakdown products. The majority of these products are cancer-fighting isothiocyanates.

Evidence for sauerkraut’s anticancer effect is growing. Previous epidemiological studies have reported that Polish women who move to the United States have a higher incidence of breast cancer than those who remain in Poland, a statistic that some scientists attribute to a higher consumption of cabbage among the Polish women compared to their American counterparts.

At least one study found evidence that compounds in sauerkraut could inhibit estrogen, a hormone that can trigger the spread of breast cancer. The specific compounds have not been identified, however.

Currently, the researchers are investigating the effect of different starter cultures on the breakdown of glucosinolate. They hope the research may lead to sauerkraut with a greater abundance of healthy compounds, boosting its status as a functional (nutritious) food.

Besides anticancer compounds, the fermentation process also produces other healthy compounds not found in raw cabbage. These include organic acids such as lactic acid, which makes cabbage easier to digest. Although some loss in nutrients may occur during fermentation, sauerkraut is still a good source for vitamin C, certain minerals and dietary fiber, the researchers say.

Their work also adds to a growing number of studies demonstrating that similar cruciferous vegetables (including broccoli, cauliflower and Brussels sprouts) contain anticancer compounds.

Sauerkraut is a low-calorie, low-fat food that is second only to mustard as this country’s favorite hot dog topping. Americans annually consume an estimated 387 million pounds of sauerkraut, or about 1.5 pounds per person yearly, according to Pickle Packers International, Inc., a trade association for the pickled vegetable industry.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>