Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein patterns in blood may predict prostate cancer diagnosis

16.10.2002


Patterns of proteins found in patients’ blood serum may help distinguish between prostate cancer and benign conditions, scientists from the National Cancer Institute (NCI) and the Food and Drug Administration (FDA) report today in the Journal of the National Cancer Institute*. The technique, which relies on a simple test using a drop of blood, may be useful in deciding whether to perform a biopsy in men with elevated prostate specific antigen (PSA) levels.



Using a test that can analyze the patterns of small proteins in blood serum samples in just 30 minutes, researchers were able to differentiate between samples taken from patients diagnosed with cancer and those from patients diagnosed with benign prostate disease. The technique proved effective not only in men with normal and high PSA levels, but also in those whose PSA levels were marginally elevated (4 to 10 nanograms of antigen per milliliter of fluid), in whom it is difficult to rule out cancer without a biopsy.

Although the technique is still under evaluation, researchers believe the analysis of protein patterns will be a useful tool in the future for deciding whether men with marginally elevated PSA levels should undergo biopsy. PSA levels are commonly used as a preliminary screen for prostate cancer, but 70 percent to 75 percent of men who undergo biopsy because of an abnormal PSA level do not have cancer. The new proteomic approach has a higher specificity - that is, of the samples the test identifies as cancer, a large percentage are in fact cancer, rather than some other benign disease.


"For men with marginally elevated PSA levels, the specificity of the test is 71 percent, as opposed to a very low specificity for PSA in this range," said Emanuel Petricoin III, Ph.D., of the FDA’s Center for Biologics Evaluation and Research, the first author of the study. "We hope that by using proteomic pattern analysis screening in combination with other screening methods, we can reduce the number of unnecessary biopsies for prostate cancer in the future."

The diagnostic test relied on computer software that detects key patterns of small proteins in the blood. Researchers analyzed serum proteins with mass spectroscopy, a technique used to sort proteins and other molecules based on their weight and electrical charge. They then used an artificial intelligence program developed by Correlogic Systems, Inc., in Bethesda, Md., to train a computer to identify patterns of proteins that differed between patients with prostate cancer and those in which a biopsy had found no evidence of disease. These patterns were identified using serum samples from 56 patients who had undergone a biopsy and whose disease status was known.

Once established, the protein patterns were then used to predict diagnosis in a separate group of patients, whose biopsy results were not known by the researchers. From this group, researchers were able to correctly identify 36 of 38 (95 percent) cases of prostate cancer and 177 of 228 (78 percent) cases of benign disease.

The study follows up on the recent finding by the same research group that protein patterns in serum can be used to detect ovarian cancer.

"We have now demonstrated that combining proteomic technology with artificial intelligence based bioinformatics can be a powerful tool, and is a new paradigm in the detection and diagnosis of both ovarian and prostate cancers," said Lance Liotta, M.D., Ph.D., the senior investigator on the study from NCI’s Center for Cancer Research. "We are extremely optimistic that this new approach will prove useful in detecting and diagnosing many other cancers and diseases in the future."

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov.

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>