Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protein patterns in blood may predict prostate cancer diagnosis


Patterns of proteins found in patients’ blood serum may help distinguish between prostate cancer and benign conditions, scientists from the National Cancer Institute (NCI) and the Food and Drug Administration (FDA) report today in the Journal of the National Cancer Institute*. The technique, which relies on a simple test using a drop of blood, may be useful in deciding whether to perform a biopsy in men with elevated prostate specific antigen (PSA) levels.

Using a test that can analyze the patterns of small proteins in blood serum samples in just 30 minutes, researchers were able to differentiate between samples taken from patients diagnosed with cancer and those from patients diagnosed with benign prostate disease. The technique proved effective not only in men with normal and high PSA levels, but also in those whose PSA levels were marginally elevated (4 to 10 nanograms of antigen per milliliter of fluid), in whom it is difficult to rule out cancer without a biopsy.

Although the technique is still under evaluation, researchers believe the analysis of protein patterns will be a useful tool in the future for deciding whether men with marginally elevated PSA levels should undergo biopsy. PSA levels are commonly used as a preliminary screen for prostate cancer, but 70 percent to 75 percent of men who undergo biopsy because of an abnormal PSA level do not have cancer. The new proteomic approach has a higher specificity - that is, of the samples the test identifies as cancer, a large percentage are in fact cancer, rather than some other benign disease.

"For men with marginally elevated PSA levels, the specificity of the test is 71 percent, as opposed to a very low specificity for PSA in this range," said Emanuel Petricoin III, Ph.D., of the FDA’s Center for Biologics Evaluation and Research, the first author of the study. "We hope that by using proteomic pattern analysis screening in combination with other screening methods, we can reduce the number of unnecessary biopsies for prostate cancer in the future."

The diagnostic test relied on computer software that detects key patterns of small proteins in the blood. Researchers analyzed serum proteins with mass spectroscopy, a technique used to sort proteins and other molecules based on their weight and electrical charge. They then used an artificial intelligence program developed by Correlogic Systems, Inc., in Bethesda, Md., to train a computer to identify patterns of proteins that differed between patients with prostate cancer and those in which a biopsy had found no evidence of disease. These patterns were identified using serum samples from 56 patients who had undergone a biopsy and whose disease status was known.

Once established, the protein patterns were then used to predict diagnosis in a separate group of patients, whose biopsy results were not known by the researchers. From this group, researchers were able to correctly identify 36 of 38 (95 percent) cases of prostate cancer and 177 of 228 (78 percent) cases of benign disease.

The study follows up on the recent finding by the same research group that protein patterns in serum can be used to detect ovarian cancer.

"We have now demonstrated that combining proteomic technology with artificial intelligence based bioinformatics can be a powerful tool, and is a new paradigm in the detection and diagnosis of both ovarian and prostate cancers," said Lance Liotta, M.D., Ph.D., the senior investigator on the study from NCI’s Center for Cancer Research. "We are extremely optimistic that this new approach will prove useful in detecting and diagnosing many other cancers and diseases in the future."

NCI Press Office | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>