Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein patterns in blood may predict prostate cancer diagnosis

16.10.2002


Patterns of proteins found in patients’ blood serum may help distinguish between prostate cancer and benign conditions, scientists from the National Cancer Institute (NCI) and the Food and Drug Administration (FDA) report today in the Journal of the National Cancer Institute*. The technique, which relies on a simple test using a drop of blood, may be useful in deciding whether to perform a biopsy in men with elevated prostate specific antigen (PSA) levels.



Using a test that can analyze the patterns of small proteins in blood serum samples in just 30 minutes, researchers were able to differentiate between samples taken from patients diagnosed with cancer and those from patients diagnosed with benign prostate disease. The technique proved effective not only in men with normal and high PSA levels, but also in those whose PSA levels were marginally elevated (4 to 10 nanograms of antigen per milliliter of fluid), in whom it is difficult to rule out cancer without a biopsy.

Although the technique is still under evaluation, researchers believe the analysis of protein patterns will be a useful tool in the future for deciding whether men with marginally elevated PSA levels should undergo biopsy. PSA levels are commonly used as a preliminary screen for prostate cancer, but 70 percent to 75 percent of men who undergo biopsy because of an abnormal PSA level do not have cancer. The new proteomic approach has a higher specificity - that is, of the samples the test identifies as cancer, a large percentage are in fact cancer, rather than some other benign disease.


"For men with marginally elevated PSA levels, the specificity of the test is 71 percent, as opposed to a very low specificity for PSA in this range," said Emanuel Petricoin III, Ph.D., of the FDA’s Center for Biologics Evaluation and Research, the first author of the study. "We hope that by using proteomic pattern analysis screening in combination with other screening methods, we can reduce the number of unnecessary biopsies for prostate cancer in the future."

The diagnostic test relied on computer software that detects key patterns of small proteins in the blood. Researchers analyzed serum proteins with mass spectroscopy, a technique used to sort proteins and other molecules based on their weight and electrical charge. They then used an artificial intelligence program developed by Correlogic Systems, Inc., in Bethesda, Md., to train a computer to identify patterns of proteins that differed between patients with prostate cancer and those in which a biopsy had found no evidence of disease. These patterns were identified using serum samples from 56 patients who had undergone a biopsy and whose disease status was known.

Once established, the protein patterns were then used to predict diagnosis in a separate group of patients, whose biopsy results were not known by the researchers. From this group, researchers were able to correctly identify 36 of 38 (95 percent) cases of prostate cancer and 177 of 228 (78 percent) cases of benign disease.

The study follows up on the recent finding by the same research group that protein patterns in serum can be used to detect ovarian cancer.

"We have now demonstrated that combining proteomic technology with artificial intelligence based bioinformatics can be a powerful tool, and is a new paradigm in the detection and diagnosis of both ovarian and prostate cancers," said Lance Liotta, M.D., Ph.D., the senior investigator on the study from NCI’s Center for Cancer Research. "We are extremely optimistic that this new approach will prove useful in detecting and diagnosing many other cancers and diseases in the future."

NCI Press Office | EurekAlert!
Further information:
http://www.cancer.gov.

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>