Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers track elusive brain tumor cells in mice with neural stem cells modified to deliver IL-12

15.10.2002


Findings are cover story of Oct. 15 issue of Cancer Research



Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute have successfully tested a new treatment for brain cancer by utilizing neural stem cells to track and destroy cancer cells within the brain. Scientists hope the encouraging results may eventually lead to an effective treatment for glioma, the most aggressive form of primary brain tumor in humans. The study, conducted in mice with experimental brain cancer, is featured on the cover of the Oct. 15 issue of the journal Cancer Research.

The prognosis has historically been extremely poor for patients diagnosed with malignant gliomas. These tumors have very poorly defined margins, and glioma cells often spread deep into healthy brain tissue making their effective surgical removal extremely difficult. Often, pockets of tumor cells break off from the main tumor and migrate deep into non-tumorous areas of the brain. Therefore, even if the original tumor is completely removed or destroyed, the risk of recurrence is high as cells in these distant "satellites" multiply and eventually re-form a new brain tumor. Due to these characteristics, treating brain cancer has been extremely difficult.


The new experimental treatment involves the use of neural stem cells for tracking and targeting brain tumor cells that spread out into normal brain. Scientists show that neural stem cells, when injected into brain tumors, can follow tumor cells as they migrate away from the main tumor mass. This capability led scientists to genetically engineer neural stem cells to produce interleukin 12, an immune stimulating chemical known to kill glioma cells. The interleukin 12 producing neural stem cells were then injected into brain tumors in mice and could kill tumor cells that had spread deep into normal brain tissue, at considerable distance from the primary tumor. Mice treated with this novel strategy survived significantly longer than control-treated mice. In fact, 30% of animals treated in this new manner developed long-term immunity to brain cancer, indicating the potency of this therapy.

Scientists demonstrated that the neural stem cells were able to kill the spreading tumor cells by delivering interleukin 12 directly to these migrating glioma "satellites". Previous research at the Maxine Dunitz Neurosurgical Institute has demonstrated that interleukin 12 can activate cancer killing cells from the immune system to attack and destroy brain tumor cells. The ability of neural stem cells to deliver this immune stimulating protein directly to small pockets of brain tumor cells that can not be accessed using surgery, represents a promising new method that could be used to eliminate all remaining tumor left behind after routine surgery. This could hopefully lower the incidence of tumor recurrence and improve survival in patients with malignant gliomas.

"The current focus of experimental neural stem cell therapeutics is primarily based around their use in the treatment of neurodegenerative disorders and stroke. We have demonstrated that combining the tumoricidal potency of interleukin 12 with the extensive tumor tracing capability of neural stem cells, results in a synergistic therapeutic benefit," according to the authors. "This further extends the scope of neural stem cell therapy to include their use as vehicles for protein delivery to in vivo glioma, and therefore represents a promising new treatment modality for malignant brain tumors."

Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>