Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers track elusive brain tumor cells in mice with neural stem cells modified to deliver IL-12

15.10.2002


Findings are cover story of Oct. 15 issue of Cancer Research



Researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute have successfully tested a new treatment for brain cancer by utilizing neural stem cells to track and destroy cancer cells within the brain. Scientists hope the encouraging results may eventually lead to an effective treatment for glioma, the most aggressive form of primary brain tumor in humans. The study, conducted in mice with experimental brain cancer, is featured on the cover of the Oct. 15 issue of the journal Cancer Research.

The prognosis has historically been extremely poor for patients diagnosed with malignant gliomas. These tumors have very poorly defined margins, and glioma cells often spread deep into healthy brain tissue making their effective surgical removal extremely difficult. Often, pockets of tumor cells break off from the main tumor and migrate deep into non-tumorous areas of the brain. Therefore, even if the original tumor is completely removed or destroyed, the risk of recurrence is high as cells in these distant "satellites" multiply and eventually re-form a new brain tumor. Due to these characteristics, treating brain cancer has been extremely difficult.


The new experimental treatment involves the use of neural stem cells for tracking and targeting brain tumor cells that spread out into normal brain. Scientists show that neural stem cells, when injected into brain tumors, can follow tumor cells as they migrate away from the main tumor mass. This capability led scientists to genetically engineer neural stem cells to produce interleukin 12, an immune stimulating chemical known to kill glioma cells. The interleukin 12 producing neural stem cells were then injected into brain tumors in mice and could kill tumor cells that had spread deep into normal brain tissue, at considerable distance from the primary tumor. Mice treated with this novel strategy survived significantly longer than control-treated mice. In fact, 30% of animals treated in this new manner developed long-term immunity to brain cancer, indicating the potency of this therapy.

Scientists demonstrated that the neural stem cells were able to kill the spreading tumor cells by delivering interleukin 12 directly to these migrating glioma "satellites". Previous research at the Maxine Dunitz Neurosurgical Institute has demonstrated that interleukin 12 can activate cancer killing cells from the immune system to attack and destroy brain tumor cells. The ability of neural stem cells to deliver this immune stimulating protein directly to small pockets of brain tumor cells that can not be accessed using surgery, represents a promising new method that could be used to eliminate all remaining tumor left behind after routine surgery. This could hopefully lower the incidence of tumor recurrence and improve survival in patients with malignant gliomas.

"The current focus of experimental neural stem cell therapeutics is primarily based around their use in the treatment of neurodegenerative disorders and stroke. We have demonstrated that combining the tumoricidal potency of interleukin 12 with the extensive tumor tracing capability of neural stem cells, results in a synergistic therapeutic benefit," according to the authors. "This further extends the scope of neural stem cell therapy to include their use as vehicles for protein delivery to in vivo glioma, and therefore represents a promising new treatment modality for malignant brain tumors."

Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>