Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers develop gene therapy technique that sharply cuts risks

14.10.2002


Researchers at Stanford University Medical Center have devised a new gene therapy technique that appears to eliminate one of the major health risks linked to gene therapy. The technique, published in the Oct. 15 advanced online edition of the journal Nature Biotechnology, overcomes the need for viral vectors that have plagued gene therapy trials, while retaining the ability to insert therapeutic DNA into specific sites in the chromosomes.



"Our approach provides an alternative that didn’t exist before," said Michele Calos, PhD, associate professor of genetics at the School of Medicine and lead author on the study.

The goal of gene therapy is to insert a healthy copy of a gene into a cell where it can take over for a faulty version. If the therapeutic DNA does not integrate into the human chromosome, it produces its protein for a short time before being turned off or broken down within the cell. For a long-term cure, the gene has to wedge itself into a chromosome where it remains indefinitely integrated, getting passed on when the cell divides.


Current gene therapy approaches that cause genes to integrate use a viral vector to sneak the therapeutic DNA into the host cell, Calos said. However, the DNA inserts itself into the chromosome at random positions. In one recent French gene therapy trial, the randomly inserted DNA apparently activated a neighboring oncogene, causing a patient to develop leukemia. "That sort of puts another cloud over the existing gene therapy trials," Calos said.

Calos’ technique avoids the pitfalls of other gene therapy approaches by integrating DNA without using viral vectors, inserting the DNA at known locations. This new technique can also handle genes that are too large to fit into a viral package, such as the gene for Duchenne’s muscular dystrophy, Calos said.

In developing this new approach, Calos hijacked a mechanism used by a bacteria-infecting virus (called a bacteriophage) to integrate its genes into bacteria. The bacteriophage makes a protein called integrase that inserts the viral genes into a specific DNA sequence on the bacteria chromosome. It turns out that humans also have a version of that DNA sequence. When the researchers insert a copy of the therapeutic gene and a gene coding for integrase into a human cell, the integrase inserts the gene within the human sequence.

Calos and members of her lab, in collaboration with Mark Kay, MD, PhD, professor of pediatrics and genetics, tested the technique using a gene that makes Factor IX - a protein that is missing in the blood of people with one form of hemophilia. They injected mice with a piece of DNA containing the Factor IX gene plus a stretch of DNA that acts as an "insert me" signal to integrase. At the same time they injected a gene for integrase.

Within a week, mice that received this injection made 12 times more Factor IX than their littermates that received the injection without the integrase. Further experiments confirmed that the Factor IX gene had successfully integrated into the mouse DNA.

Although the mouse genome contains at least 53 potential integration sites, Calos and her team found the Factor IX gene in only two locations, with one location by far the more common. She said that for each tissue there may be a particular site that is the most likely insertion point. Her group is testing the technique in different tissue types to ensure that no human integration site is near a potential oncogene. "We need to look in different tissues to see where the hot spot is," Calos said.

Calos is also modifying the integrase so it targets specific integration sites that her team knows are safe. "We mutated the enzyme and evolved it so it will prefer one place over another," she said.

Calos said this approach should be effective for treating diseases in several different human organs including skin, retina, blood, muscle and lung. She hopes to start human trials for the technique in a fatal childhood skin disease called recessive dystrophic epidermolysis bullosa, which she has already treated in mice. "If that trial shows that it is safe then that will open the door for trials in other diseases," Calos said. She has collaborations underway testing the technique for use in Duchenne’s muscular dystrophy and cystic fibrosis, among others.


Contributing researchers to the study include Stanford graduate students Eric Olivares and Thomas Chalberg, and post-doctoral scholar Roger Hollis, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>