Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers develop gene therapy technique that sharply cuts risks

14.10.2002


Researchers at Stanford University Medical Center have devised a new gene therapy technique that appears to eliminate one of the major health risks linked to gene therapy. The technique, published in the Oct. 15 advanced online edition of the journal Nature Biotechnology, overcomes the need for viral vectors that have plagued gene therapy trials, while retaining the ability to insert therapeutic DNA into specific sites in the chromosomes.



"Our approach provides an alternative that didn’t exist before," said Michele Calos, PhD, associate professor of genetics at the School of Medicine and lead author on the study.

The goal of gene therapy is to insert a healthy copy of a gene into a cell where it can take over for a faulty version. If the therapeutic DNA does not integrate into the human chromosome, it produces its protein for a short time before being turned off or broken down within the cell. For a long-term cure, the gene has to wedge itself into a chromosome where it remains indefinitely integrated, getting passed on when the cell divides.


Current gene therapy approaches that cause genes to integrate use a viral vector to sneak the therapeutic DNA into the host cell, Calos said. However, the DNA inserts itself into the chromosome at random positions. In one recent French gene therapy trial, the randomly inserted DNA apparently activated a neighboring oncogene, causing a patient to develop leukemia. "That sort of puts another cloud over the existing gene therapy trials," Calos said.

Calos’ technique avoids the pitfalls of other gene therapy approaches by integrating DNA without using viral vectors, inserting the DNA at known locations. This new technique can also handle genes that are too large to fit into a viral package, such as the gene for Duchenne’s muscular dystrophy, Calos said.

In developing this new approach, Calos hijacked a mechanism used by a bacteria-infecting virus (called a bacteriophage) to integrate its genes into bacteria. The bacteriophage makes a protein called integrase that inserts the viral genes into a specific DNA sequence on the bacteria chromosome. It turns out that humans also have a version of that DNA sequence. When the researchers insert a copy of the therapeutic gene and a gene coding for integrase into a human cell, the integrase inserts the gene within the human sequence.

Calos and members of her lab, in collaboration with Mark Kay, MD, PhD, professor of pediatrics and genetics, tested the technique using a gene that makes Factor IX - a protein that is missing in the blood of people with one form of hemophilia. They injected mice with a piece of DNA containing the Factor IX gene plus a stretch of DNA that acts as an "insert me" signal to integrase. At the same time they injected a gene for integrase.

Within a week, mice that received this injection made 12 times more Factor IX than their littermates that received the injection without the integrase. Further experiments confirmed that the Factor IX gene had successfully integrated into the mouse DNA.

Although the mouse genome contains at least 53 potential integration sites, Calos and her team found the Factor IX gene in only two locations, with one location by far the more common. She said that for each tissue there may be a particular site that is the most likely insertion point. Her group is testing the technique in different tissue types to ensure that no human integration site is near a potential oncogene. "We need to look in different tissues to see where the hot spot is," Calos said.

Calos is also modifying the integrase so it targets specific integration sites that her team knows are safe. "We mutated the enzyme and evolved it so it will prefer one place over another," she said.

Calos said this approach should be effective for treating diseases in several different human organs including skin, retina, blood, muscle and lung. She hopes to start human trials for the technique in a fatal childhood skin disease called recessive dystrophic epidermolysis bullosa, which she has already treated in mice. "If that trial shows that it is safe then that will open the door for trials in other diseases," Calos said. She has collaborations underway testing the technique for use in Duchenne’s muscular dystrophy and cystic fibrosis, among others.


Contributing researchers to the study include Stanford graduate students Eric Olivares and Thomas Chalberg, and post-doctoral scholar Roger Hollis, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>