Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford researchers develop gene therapy technique that sharply cuts risks

14.10.2002


Researchers at Stanford University Medical Center have devised a new gene therapy technique that appears to eliminate one of the major health risks linked to gene therapy. The technique, published in the Oct. 15 advanced online edition of the journal Nature Biotechnology, overcomes the need for viral vectors that have plagued gene therapy trials, while retaining the ability to insert therapeutic DNA into specific sites in the chromosomes.



"Our approach provides an alternative that didn’t exist before," said Michele Calos, PhD, associate professor of genetics at the School of Medicine and lead author on the study.

The goal of gene therapy is to insert a healthy copy of a gene into a cell where it can take over for a faulty version. If the therapeutic DNA does not integrate into the human chromosome, it produces its protein for a short time before being turned off or broken down within the cell. For a long-term cure, the gene has to wedge itself into a chromosome where it remains indefinitely integrated, getting passed on when the cell divides.


Current gene therapy approaches that cause genes to integrate use a viral vector to sneak the therapeutic DNA into the host cell, Calos said. However, the DNA inserts itself into the chromosome at random positions. In one recent French gene therapy trial, the randomly inserted DNA apparently activated a neighboring oncogene, causing a patient to develop leukemia. "That sort of puts another cloud over the existing gene therapy trials," Calos said.

Calos’ technique avoids the pitfalls of other gene therapy approaches by integrating DNA without using viral vectors, inserting the DNA at known locations. This new technique can also handle genes that are too large to fit into a viral package, such as the gene for Duchenne’s muscular dystrophy, Calos said.

In developing this new approach, Calos hijacked a mechanism used by a bacteria-infecting virus (called a bacteriophage) to integrate its genes into bacteria. The bacteriophage makes a protein called integrase that inserts the viral genes into a specific DNA sequence on the bacteria chromosome. It turns out that humans also have a version of that DNA sequence. When the researchers insert a copy of the therapeutic gene and a gene coding for integrase into a human cell, the integrase inserts the gene within the human sequence.

Calos and members of her lab, in collaboration with Mark Kay, MD, PhD, professor of pediatrics and genetics, tested the technique using a gene that makes Factor IX - a protein that is missing in the blood of people with one form of hemophilia. They injected mice with a piece of DNA containing the Factor IX gene plus a stretch of DNA that acts as an "insert me" signal to integrase. At the same time they injected a gene for integrase.

Within a week, mice that received this injection made 12 times more Factor IX than their littermates that received the injection without the integrase. Further experiments confirmed that the Factor IX gene had successfully integrated into the mouse DNA.

Although the mouse genome contains at least 53 potential integration sites, Calos and her team found the Factor IX gene in only two locations, with one location by far the more common. She said that for each tissue there may be a particular site that is the most likely insertion point. Her group is testing the technique in different tissue types to ensure that no human integration site is near a potential oncogene. "We need to look in different tissues to see where the hot spot is," Calos said.

Calos is also modifying the integrase so it targets specific integration sites that her team knows are safe. "We mutated the enzyme and evolved it so it will prefer one place over another," she said.

Calos said this approach should be effective for treating diseases in several different human organs including skin, retina, blood, muscle and lung. She hopes to start human trials for the technique in a fatal childhood skin disease called recessive dystrophic epidermolysis bullosa, which she has already treated in mice. "If that trial shows that it is safe then that will open the door for trials in other diseases," Calos said. She has collaborations underway testing the technique for use in Duchenne’s muscular dystrophy and cystic fibrosis, among others.


Contributing researchers to the study include Stanford graduate students Eric Olivares and Thomas Chalberg, and post-doctoral scholar Roger Hollis, PhD.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>