Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrons defeat anthrax

11.10.2002


Perhaps, bioterrorists will not be able to spread lethal bacteria of anthrax in envelopes all over the world. Siberian biologists and physics have thought up how to adapt electron accelerator that is usually used for sterilizing medical equipment for decontamination of letters. To optimize the power of the accelerator they calculated how many bacteria could get into a human body when touching the letter infected and how many bacteria should be destroyed to avoid the tragedy.



For their experiment the scientists chose two bacteria species that form almost ineradicable spores. Both species were genetically close to anthrax. One of them is a harmless inhabitant of soils whereas the other causes a disease in insects. Its spores in the mixture with the powdered mineral kaolin can be used as insecticide.

When imitating the probable actions of mail terrorists the scientists made 60 paper packets with the sides of 50 and 25 millimeters and poured a quarter of a gram of sterile kaolin. Then several drops of suspension, which contained 10 million spores per one milliliter, were added into each packet and intensively mixed with kaolin. Then the packets were dried at 70 C and put into envelopes.


The samples were treated with an electron beam from the industrial electron accelerator. The doses applied were varied from 1 to 400 kGy. To find out the effect from a particular dose the powder with the bacteria was dissolved in distilled water and placed in culture medium. It turned out that the dose of 10 kGy killed a lot of spores. The scientists could not find any live microbes after treating the samples with the dose of 20 kGy and the dose of 400 kGy even made the paper destroy. It became fragile.

When you touch the powder about 50 mg of kaolin may remain on your fingers. However, the skin is better protected against penetrating the infection inside in comparison with the lungs. How much kaolin with the spores can a person breathe in? To find it out the researchers tore the envelopes open, placed the powder on a platter and collected the air polluted with a pump with a filter at a height of 30 cm above the platter for a minute. The operation was repeated three times and then the quantity of kaolin on the filter was determined chemically. According to the data obtained a person can breathe in 1 - 2 thousandth of a milligram of the powder. Based on the results and the calculations, the scientists recommend irradiating the correspondence with a dose of about 50 kGy. However, to reduce the probability of infection from one letter to one case per a million the dose of 22 kGy proved to be quite sufficient. The electron accelerator, which is produced at the Budker Institute of Nuclear Physics (Novosibirsk), can be used for this purpose. The accelerator weighs about ten tons and can be placed on the area of about 50 square meters. To protect the staff from radiation the accelerator is isolated with concrete layer of one and a half meter.

Electron accelerator can sterilize relatively thin objects. That is why the letters should be placed in one layer. According to the calculations the rate of sorting will remain within the norm if the number of staff doubles or the process of sorting is automated. The sterilization of parcels seems to be more complicated task. Only dangerous sources of gamma radiation are able to solve it. However, the biologists doubt that terrorists will start using parcels for their subversive activity and believe that electron accelerator can eliminate the problem of mail terrorism sufficiently.

Alexander Barne | alfa

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>