Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy success in the laboratory buoys hope for Parkinson’s disease

11.10.2002


Scientists at Jefferson Medical College have used gene therapy to reverse the progression of Parkinson’s disease in rats. They have found that by adding a gene for an enzyme, they were able to reprogram brain circuitry and halt the deterioration of dopamine producing brain cells, one of the key problems in the disease.



“It’s not just inserting a replacement for a missing or mutated gene as a treatment for a genetic disorder,” says Michael Oshinsky, Ph.D., research assistant professor of neurology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and part of the team reporting its results October 11 in the journal Science. “This is more profound. We are actually changing the brain’s circuitry as treatment for a disease.”

According to Dr. Oshinsky and Jia Luo, M.D., research associate at Jefferson Medical College of Thomas Jefferson University, in Parkinson’s, a portion of the brain called the subthalamic nucleus is overactive. These cells produce glutamate, an excitatory neurotransmitter, or chemical message carrier, into another region called the substantia nigra, which is important for the coordination of movement and where the brain chemical dopamine is made. Parkinson’s is caused by the deterioration of dopamine-producing nerve cells.


The researchers – including scientists from Jefferson, the University of Auckland, New Zealand, and Cornell University – took their cues from work with deep brain stimulation, where brain cells in the subthalamic nucleus are stimulated at a high frequency as a treatment for late-stage Parkinson’s. This treatment prevents overactivity in the substantia nigra.

The team, led by Matthew During, M.D., formerly of Jefferson Medical College of Thomas Jefferson University and now at the University of Auckland, decided that instead of turning off the neurons in the subthalamic nucleus, they would attempt to change the neurons from excitatory to inhibitory, which would then contain the inhibitory chemical messenger GABA.

The team used an adeno-associated virus to carry the gene for an enzyme, glutamic acid decarboxylase (GAD), into brain cells in rats that were made Parkinsonian. They saw a dramatic difference in the behavior and physiology of the Parkinsonian rats treated with the GAD-carrying virus compared to the Parkinsonian rats that did not receive the treatment.

Three weeks after the gene transfer, Dr. Luo made Parkinson’s lesions on one side of the brains of rats that had the gene therapy. The researchers then performed various behavioral tests to see if the gene therapy could protect against the development of classic Parkinson’s symptoms. One test showed that nearly 70 percent of the animals with Parkinson’s lesions and the GAD gene therapy had no Parkinson’s symptoms when they received chemicals that mimicked dopamine in the brain. Normally, animals with Parkinson’s are hypersensitive to dopamine, and actually respond to it by running around in circles over and over. The test result was a “very strong behavioral measure showing this is a good treatment for Parkinson’s,” Dr. Oshinsky says.

The researchers also stimulated the rats’ subthalamic nucleus and examined the resulting connection in the substantia nigra. They compared animals that had received the GAD gene therapy with those that had not had the gene therapy and normal rats. In the untreated Parkinsonian rats, more than 80 percent of cells showed excitatory responses. As few as 10 percent showed inhibitory responses.

But in the GAD-treated animals, they found practically the opposite. Nearly 80 percent of the neurons they recorded signals from showed inhibitory responses, whereas only about 17 percent showed excitatory responses. “It was a profound change in the connection between the subthalamic nucleus and the substantia nigra – that’s where there was a phenotypic change in the neural connections,” Dr. Oshinsky explains.

“By reprogramming it [the brain’s circuitry], we actually could show that it was protecting dopamine neurons from dying off,” Dr. During says. “The main advantage is that inhibitory input seems to protect the dopamine neurons.”

“It’s a classic excitatory connection in the brain and we converted it to an inhibitory connection,” Dr. Oshinsky says. “It’s nice to be able to show a real mechanism of action for a potential treatment of Parkinson’s.” He notes that the rats were tested as many as 10 months after receiving gene therapy; the change was permanent. The group already has approval from the Food and Drug Administration for a clinical trial, which will be the first gene therapy protocol for Parkinson’s disease.

Steve Benowitz | EurekAlert!
Further information:
http://www.tju.edu/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>