Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New avenue of HIV damage found

10.10.2002


Researchers at the University of Minnesota have discovered a new process by which HIV damages the immune system. They demonstrated that the portion of lymph nodes called the T cell zone is significantly damaged by chronic inflammation, which causes fibrosis. This is important because the T cell zone is where a significant portion of the human immune response occurs. The finding of accumulation of scar tissue in this portion of the lymph node may explain why aggressive anti-retroviral therapy (ART) does not improve the immune system in some people with HIV-1 infection. The study findings will be published in the Oct. 16, 2002, issue of the Journal of Clinical Investigation. The paper can be found at www.jci.org.



"HIV infection ultimately depletes the body of CD4 T cells, making it impossible to mount an immune response," said Timothy W. Schacker, M.D., associate professor of medicine and author of the study. "For the first time, we show that one mechanism of this depletion is damage to the structure that these cells need to maintain a normal-sized population and to mount an immune response to other infections. In essence, the T cell home is destroyed."

Researchers enrolled 11 individuals at various stages of HIV/AIDS infection. Their goal was to understand the specific changes that happen in the population of cells most directly affected by HIV--the CD4 T cells. These cells are responsible for coordinating the immune response and are the primary target for HIV infection and replication. Researchers biopsied and examined the lymph node tissue before and during treatment for HIV. They have developed sensitive methods to precisely measure both the size of the CD4 population in lymphatic tissue and the amount of scar tissue accumulated in the T cell zone.


Researchers noted two significant findings. First, the size of the CD4 T cell population measured in peripheral blood (commonly done to stage the disease and determine the effects of treatment) does not accurately reflect the size of the population in lymph tissues. "You could have a reasonable peripheral count and a very poor count in lymph tissues," said Schacker.

Second, the amount of fibrosis and scar tissue in the T cell zone was significantly related to the size of the CD4 population in that space (i.e. the more scar tissue, the fewer cells) and the recovery of the CD4 population with therapy. The researchers suggest the process of destruction is analogous to what is seen in chronic active hepatitis.

"We knew that T cells are destroyed by direct viral replication," said Schacker, "but we now know that the population is unable to recover to a normal size because the environmental niche used to support the cells is destroyed. New CD4 T cells are unable to get into the space they need to be in to function, and there is no space for the cells to divide."

One implication of this discovery is that through testing of the lymph nodes (similar to what is done to stage cancer), physicians might accurately stage the disease and predict the response to standard therapies.

"This is essentially a new concept in how HIV infection causes damage to the human immune system," said Schacker. "Our observation may explain why up to 25 percent of people placed on HIV therapy may have good viral suppression but still have no significant increase in T cell count.

"Currently, most treatment strategies for HIV/AIDS focus on stopping the virus from replicating itself in the body, which is essential to begin the process of immune reconstitution, but it does not happen for everyone. These findings suggest that therapies targeting the damage from inflammation and accumulation of scar tissue might enhance current antiviral therapy."

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>