Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on cells’ ’power centers’ sheds light on AIDS treatments

10.10.2002


Companies that create HIV-AIDS drugs now have key information that could assist in making new medications with fewer side effects.



Researchers Henry Weiner, a professor of biochemistry at Purdue University, Steven Zollo of the National Institute of Standards and Technology and Lauren Wood of the National Cancer Institute, noted the similarity between HIV-AIDS treatment side effects and naturally occurring diseases. Certain HIV-AIDS treatment side effects, such as fat loss and insulin resistance, clinically resemble diseases of the mitochondria, the "power centers" in cells, that affect the functioning of other parts of the cell.

The researchers hypothesized that the drugs to combat HIV infection also might inadvertently affect the functioning of the mitochondria.


"Finding that a drug affects a different target than the one it was designed for is not unusual," said Weiner, an expert on protein processing in the mitochondria. The team speculated that current AIDS treatments using drugs that inhibit HIV proteins also could inhibit a key mitochondrial protein.

This speculation fits the observation by doctors that side effects resembling mitochondrial dysfunction originated after new drugs became part of the standard drug "cocktail" used to treat AIDS patients. Highly Active Antiretroviral Therapy, or HAART, has prolonged the lives of many, but also has been associated with side effects such as diabetes, high cholesterol and the development of fatty deposits.

To test the theory that the drugs were inhibiting the mitochondria, the researchers flooded isolated mitochondria with large amounts of the drugs and then measured the levels of processed protein in the mitochondria.

They found that a number of HIV-AIDS drugs can inhibit mitochondrial processing.

Although these findings suggest a possible link between HIV-AIDS drugs and mitochondrial dysfunction, Weiner said he believes that investigating the mitochondria of patients in treatment, or using tissue culture grown in the lab, is the next step.

"That is the only way to determine whether actual patients taking the medication are more than just slightly compromised by the effects of the HIV-AIDS medication on their mitochondria."

In the interim, Weiner said drug companies may find this information useful in efforts to make medications with fewer side effects.

"Drug companies making new AIDS protease inhibitors can take the enzyme we used and screen new potential drugs and select ones that can fight the virus but not damage the mitochondria," he said.

Drug manufacturers may not have made the connection to the mitochondria because the drugs’ effects are minor, Weiner said.

"The protease inhibitors were weak inhibitors of the mitochondria’s enzymatic processing system," he said. "If they were better inhibitors, that would have likely led to more serious complications in patients."

Weiner also sees other possible impacts from the research, such as potential anticancer treatments. He said scientists might find a "good way to kill tumors," by inhibiting specific enzymes within the tumors’ own mitochondria.

The research was published in the September issue of the Journal Mitochondrion. Weiner’s portion of the research was funded in part by the National Institutes of Health.

Contact: Beth Forbes, (765) 494-2722; forbes@purdue.edu

Source: Henry Weiner, (765) 494-1650; hweiner@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>