Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on cells’ ’power centers’ sheds light on AIDS treatments

10.10.2002


Companies that create HIV-AIDS drugs now have key information that could assist in making new medications with fewer side effects.



Researchers Henry Weiner, a professor of biochemistry at Purdue University, Steven Zollo of the National Institute of Standards and Technology and Lauren Wood of the National Cancer Institute, noted the similarity between HIV-AIDS treatment side effects and naturally occurring diseases. Certain HIV-AIDS treatment side effects, such as fat loss and insulin resistance, clinically resemble diseases of the mitochondria, the "power centers" in cells, that affect the functioning of other parts of the cell.

The researchers hypothesized that the drugs to combat HIV infection also might inadvertently affect the functioning of the mitochondria.


"Finding that a drug affects a different target than the one it was designed for is not unusual," said Weiner, an expert on protein processing in the mitochondria. The team speculated that current AIDS treatments using drugs that inhibit HIV proteins also could inhibit a key mitochondrial protein.

This speculation fits the observation by doctors that side effects resembling mitochondrial dysfunction originated after new drugs became part of the standard drug "cocktail" used to treat AIDS patients. Highly Active Antiretroviral Therapy, or HAART, has prolonged the lives of many, but also has been associated with side effects such as diabetes, high cholesterol and the development of fatty deposits.

To test the theory that the drugs were inhibiting the mitochondria, the researchers flooded isolated mitochondria with large amounts of the drugs and then measured the levels of processed protein in the mitochondria.

They found that a number of HIV-AIDS drugs can inhibit mitochondrial processing.

Although these findings suggest a possible link between HIV-AIDS drugs and mitochondrial dysfunction, Weiner said he believes that investigating the mitochondria of patients in treatment, or using tissue culture grown in the lab, is the next step.

"That is the only way to determine whether actual patients taking the medication are more than just slightly compromised by the effects of the HIV-AIDS medication on their mitochondria."

In the interim, Weiner said drug companies may find this information useful in efforts to make medications with fewer side effects.

"Drug companies making new AIDS protease inhibitors can take the enzyme we used and screen new potential drugs and select ones that can fight the virus but not damage the mitochondria," he said.

Drug manufacturers may not have made the connection to the mitochondria because the drugs’ effects are minor, Weiner said.

"The protease inhibitors were weak inhibitors of the mitochondria’s enzymatic processing system," he said. "If they were better inhibitors, that would have likely led to more serious complications in patients."

Weiner also sees other possible impacts from the research, such as potential anticancer treatments. He said scientists might find a "good way to kill tumors," by inhibiting specific enzymes within the tumors’ own mitochondria.

The research was published in the September issue of the Journal Mitochondrion. Weiner’s portion of the research was funded in part by the National Institutes of Health.

Contact: Beth Forbes, (765) 494-2722; forbes@purdue.edu

Source: Henry Weiner, (765) 494-1650; hweiner@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Beth Forbes | EurekAlert!
Further information:
http://www.purdue.edu/
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>