Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researchers developing tools to help track and predict West Nile Virus

09.10.2002


Satellites can "track" mosquitoes by focusing on geographical regions of the species most favorable conditions. Conventional techniques in mosquito tracking have already produced maps showing these favorable regions. Side by side, recent satellite data matches the published mosquito habitats almost identically.

Habitats determined by satellite data are shown in red. Mosquito distribution maps determined by means other than satellite surveillance are outlined in yellow. The four species represented here have tested positive for West Nile Virus in each of the past four years. They are: Culex salinarius, Culex pipiens, Culex restuans, and Aedes vexans. Data source: International Research Partnership for Infectious Diseases (INTREPID).


NASA researchers are conducting Earth Science research that may one day allow public health officials to better track and predict the spread of West Nile Virus. NASA’s goal is to provide people on the front lines of public health with innovative technologies, data and a unique vantage point from space through satellites, all tailored into useful tools and databases for streamlining efforts to combat the disease.

NASA’s Public Health Applications Program focuses the results of research occurring at different NASA centers. The program is designed to eventually supply public health agencies with access to NASA’s cutting-edge capabilities in formats they can use to better understand how and where West Nile Virus spreads, focus resources and stave off the disease more efficiently.

"The goal of the program is to extend the benefits of NASA’s investments in Earth system science, technology and data toward public-health decision making and practice," said Robert Venezia, program manager at NASA Headquarters, Washington.



West Nile Virus, first reported in the United States in 1999, causes flu-like symptoms that may lead to fatal encephalitis in people with compromised immune systems, like the elderly. Though not yet proven, scientists believe the disease may be spread across the country by infected birds traveling along their migration routes. Mosquitoes that act as a vector carry the virus and pass it on when feeding on hosts like birds, livestock, other animals and people.

Based on what is known about the disease, NASA centers, including the Goddard Space Flight Center, Greenbelt, Md., and Ames Research Center in Moffett Field, Calif., are researching methods to identify environmental indicators from data acquired on NASA Earth Observing Systems, packaged in ways that highlight factors relevant to West Nile Virus transmission.

For example, NASA’s Healthy Planet program is researching approaches to publicly disseminate information from NASA Earth-observing satellites and data archives, scientific research and communications networks.

Healthy Planet has helped Pennsylvania implement the PA West Nile Virus Surveillance System (PAWNVSS), a state-wide Geographic Information System (GIS) mapping program that will verify and validate the use of NASA weather, climate and land-use data to identify areas ripe for mosquitoes and West Nile Virus. The database contains information about dead bird findings, and human health reports of West Nile Virus. Pennsylvania agencies are currently using the PAWNVSS system to make daily decisions on the best places and times to spray for mosquitoes.

"NASA’s help has allowed us to understand climate change and to predict the beginning and end of the mosquito season across Pennsylvania," said Eric Conrad, Deputy Secretary for Field Operation at the Pennsylvania Department of Environmental Protection. "This information allows us to know when to start our mosquito-surveillance season and when to consider the season over."

Another NASA program, called the International Research Partnership for Infectious Diseases (INTREPID), is developing information products and databases derived from satellite data to show nation-wide temperatures, distributions of vegetation, bird migration routes and areas pinpointing reported cases. The combined data help scientists predict disease outbreaks by showing when and where habitats are suitable for the insects to thrive and where the disease appears to be spreading.

NASA’s Center for Health Applications of Aerospace Related Technologies is evaluating how NASA technologies like remote sensing and GIS can be used to locate habitats in California’s Sacramento valley with favorable conditions for both birds and mosquitoes. The project specifically seeks to track encephalitis, caused by a virus very similar to West Nile Virus that also primarily infects birds through mosquito vectors. These technologies may then be combined with surveys of infected birds and bird migration paths, obtained from radio transmitters placed on birds, to create temporal and spatial risk maps that may help public health personnel.

These examples from the Public Health Applications Program typify how NASA Earth Science research results are being evaluated for future use in providing decision-support for dealing with a broad range of diseases.

These efforts are in conjunction with federal, state and local public health agency initiatives. NASA is planning a joint public health and Earth Science peer review with agencies responsible for addressing national concerns on West Nile Virus. These agencies include the Centers for Disease Control and Prevention, National Institutes of Health, Environmental Protection Agency, United States Geological Survey and state health departments.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020828phap.html

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>