Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researchers developing tools to help track and predict West Nile Virus

09.10.2002


Satellites can "track" mosquitoes by focusing on geographical regions of the species most favorable conditions. Conventional techniques in mosquito tracking have already produced maps showing these favorable regions. Side by side, recent satellite data matches the published mosquito habitats almost identically.

Habitats determined by satellite data are shown in red. Mosquito distribution maps determined by means other than satellite surveillance are outlined in yellow. The four species represented here have tested positive for West Nile Virus in each of the past four years. They are: Culex salinarius, Culex pipiens, Culex restuans, and Aedes vexans. Data source: International Research Partnership for Infectious Diseases (INTREPID).


NASA researchers are conducting Earth Science research that may one day allow public health officials to better track and predict the spread of West Nile Virus. NASA’s goal is to provide people on the front lines of public health with innovative technologies, data and a unique vantage point from space through satellites, all tailored into useful tools and databases for streamlining efforts to combat the disease.

NASA’s Public Health Applications Program focuses the results of research occurring at different NASA centers. The program is designed to eventually supply public health agencies with access to NASA’s cutting-edge capabilities in formats they can use to better understand how and where West Nile Virus spreads, focus resources and stave off the disease more efficiently.

"The goal of the program is to extend the benefits of NASA’s investments in Earth system science, technology and data toward public-health decision making and practice," said Robert Venezia, program manager at NASA Headquarters, Washington.



West Nile Virus, first reported in the United States in 1999, causes flu-like symptoms that may lead to fatal encephalitis in people with compromised immune systems, like the elderly. Though not yet proven, scientists believe the disease may be spread across the country by infected birds traveling along their migration routes. Mosquitoes that act as a vector carry the virus and pass it on when feeding on hosts like birds, livestock, other animals and people.

Based on what is known about the disease, NASA centers, including the Goddard Space Flight Center, Greenbelt, Md., and Ames Research Center in Moffett Field, Calif., are researching methods to identify environmental indicators from data acquired on NASA Earth Observing Systems, packaged in ways that highlight factors relevant to West Nile Virus transmission.

For example, NASA’s Healthy Planet program is researching approaches to publicly disseminate information from NASA Earth-observing satellites and data archives, scientific research and communications networks.

Healthy Planet has helped Pennsylvania implement the PA West Nile Virus Surveillance System (PAWNVSS), a state-wide Geographic Information System (GIS) mapping program that will verify and validate the use of NASA weather, climate and land-use data to identify areas ripe for mosquitoes and West Nile Virus. The database contains information about dead bird findings, and human health reports of West Nile Virus. Pennsylvania agencies are currently using the PAWNVSS system to make daily decisions on the best places and times to spray for mosquitoes.

"NASA’s help has allowed us to understand climate change and to predict the beginning and end of the mosquito season across Pennsylvania," said Eric Conrad, Deputy Secretary for Field Operation at the Pennsylvania Department of Environmental Protection. "This information allows us to know when to start our mosquito-surveillance season and when to consider the season over."

Another NASA program, called the International Research Partnership for Infectious Diseases (INTREPID), is developing information products and databases derived from satellite data to show nation-wide temperatures, distributions of vegetation, bird migration routes and areas pinpointing reported cases. The combined data help scientists predict disease outbreaks by showing when and where habitats are suitable for the insects to thrive and where the disease appears to be spreading.

NASA’s Center for Health Applications of Aerospace Related Technologies is evaluating how NASA technologies like remote sensing and GIS can be used to locate habitats in California’s Sacramento valley with favorable conditions for both birds and mosquitoes. The project specifically seeks to track encephalitis, caused by a virus very similar to West Nile Virus that also primarily infects birds through mosquito vectors. These technologies may then be combined with surveys of infected birds and bird migration paths, obtained from radio transmitters placed on birds, to create temporal and spatial risk maps that may help public health personnel.

These examples from the Public Health Applications Program typify how NASA Earth Science research results are being evaluated for future use in providing decision-support for dealing with a broad range of diseases.

These efforts are in conjunction with federal, state and local public health agency initiatives. NASA is planning a joint public health and Earth Science peer review with agencies responsible for addressing national concerns on West Nile Virus. These agencies include the Centers for Disease Control and Prevention, National Institutes of Health, Environmental Protection Agency, United States Geological Survey and state health departments.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20020828phap.html

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>