Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot pressure device may stamp out muscle loss

08.10.2002


Research to Aid Astronauts Also Could Help Bed-Ridden Patients on Earth



These boots weren’t made for walkin’, but “space boots” under development at the University of Houston may help astronauts stay healthy and readjust more quickly to walking again on terra firma.

University of Houston researchers have developed technology that could help combat the loss of muscle mass, strength and coordination experienced by astronauts during long-duration stints in microgravity. The system also may have earth-bound applications in rehabilitation therapy for bed-ridden patients.


Charles Layne, associate professor and chair of the UH Department of Health and Human Performance, and his colleagues developed a mechanical system that stimulates muscle activity in the legs by attempting to mimic the natural sensory input feet receive while walking, running or jumping.

“We’re not using electricity to directly stimulate the leg muscles, but rather a series of plungers that push against the bottom of the foot in specific patterns, which mimics the pressure one feels while walking around in normal gravity,” Layne says.

The researchers will publish a study in an upcoming issue of the journal Neuroscience Letters that describes how mechanical foot stimulation generates enhanced neuromuscular activity in the legs. Layne and his graduate student, Katherine Forth, will give presentations about their work during the World Space Congress 2002 in Houston Oct. 10-19.

In normal gravity, when you move your arms while standing or walking, muscles in your legs and trunk contract in certain ways to regulate your center of gravity and keep you from falling down.

But in space-based experiments, Layne and other researchers have previously found that when you’re floating free in space and move your arms around, postural activity in the legs and back is reduced. “This is the same situation that occurs when you lie on your back on the ground. In a stable posture, there’s no opportunity to fall over when you raise your arms, so the muscle activity in the legs disappears,” Layne says.

Layne developed a primitive space boot several years ago that incorporated an air bladder that applied static pressure to the bottom of the foot. The idea was to trick a free-floating astronaut’s nervous system by mimicking the pressure one’s feet feel while standing on the ground.

Astronauts on board the Russian Space Station MIR wore Layne’s first boots, and data collected from those flights indicated that continuous foot pressure from the boots resulted in enhanced muscle activity in the crew’s legs as they moved about their daily routine.

Now Layne and his UH colleagues are taking space boot technology another step forward.
Working with mechanical engineers in the UH Cullen College of Engineering, Layne has improved the foot-pressure technology. The researchers replaced the static air bladder with a dynamic system that uses a series of mechanical plungers to push against the bottom of the feet in patterns that mimic what feet actually feel while in action.

When you learn a new skill, like juggling, your muscles and nervous system work together to form a series of connections. The more you perform that activity, the stronger those connections are reinforced. This “use it or lose it” principal works for your neural connections as well as for your muscles, Layne says.

“While you’re in microgravity or bed-ridden, and not getting sensory input from the bottom of your feet, neither your leg muscles nor the nerves controlling their movement are active. You lose not only muscle mass, but also the ability to control your muscles in a coordinated fashion to produce efficient movement,” he says.

During long-duration space flights, such as on board the International Space Station, the successful completion of mission objectives is dependent on physical performance. Also, the maintenance of the astronauts’ health and physical condition upon their return to Earth – or upon landing on Mars – is a primary concern, Layne says.

Layne and his colleagues are in the process of developing a new boot-type device based on the dynamic foot pressure concept, one that could be worn by astronauts to serve as a supplement to exercise during space flight, as well as an effective rehabilitation technique for bed-ridden patients. “We want to optimize the patterns of sensory stimulation as well as the amount and time of pressure application. The goal is not only to reduce muscle loss but also help the nervous system retain those connections so that you can get back to optimal performance as quickly as possible, or return to some degree of functionality if you’re bed-ridden.”

The paper to be published in Neuroscience Letters describes the temporal relationship between the sensory input to the foot and the subsequent muscle activation in the legs. Human subjects had the dynamic pressure device hooked up to their feet while sensors placed on their skin picked up changes in the electrical activity in their leg muscles, which indicates the muscle is contracting.

“We could control when the pressure was applied to our subjects’ feet, and vary the application relative to when the subjects contracted their leg muscles,” Layne says. The study indicates applying the stimulus immediately before a leg muscle contracts enhances muscle activity more than stimulating the foot during or after the contraction.

Currently, Layne and his colleagues are conducting studies to determine whether foot pressure can actually prevent muscle wasting, and if so, by how much.

Amanda Siegfried | University of Houston
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>