Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot pressure device may stamp out muscle loss

08.10.2002


Research to Aid Astronauts Also Could Help Bed-Ridden Patients on Earth



These boots weren’t made for walkin’, but “space boots” under development at the University of Houston may help astronauts stay healthy and readjust more quickly to walking again on terra firma.

University of Houston researchers have developed technology that could help combat the loss of muscle mass, strength and coordination experienced by astronauts during long-duration stints in microgravity. The system also may have earth-bound applications in rehabilitation therapy for bed-ridden patients.


Charles Layne, associate professor and chair of the UH Department of Health and Human Performance, and his colleagues developed a mechanical system that stimulates muscle activity in the legs by attempting to mimic the natural sensory input feet receive while walking, running or jumping.

“We’re not using electricity to directly stimulate the leg muscles, but rather a series of plungers that push against the bottom of the foot in specific patterns, which mimics the pressure one feels while walking around in normal gravity,” Layne says.

The researchers will publish a study in an upcoming issue of the journal Neuroscience Letters that describes how mechanical foot stimulation generates enhanced neuromuscular activity in the legs. Layne and his graduate student, Katherine Forth, will give presentations about their work during the World Space Congress 2002 in Houston Oct. 10-19.

In normal gravity, when you move your arms while standing or walking, muscles in your legs and trunk contract in certain ways to regulate your center of gravity and keep you from falling down.

But in space-based experiments, Layne and other researchers have previously found that when you’re floating free in space and move your arms around, postural activity in the legs and back is reduced. “This is the same situation that occurs when you lie on your back on the ground. In a stable posture, there’s no opportunity to fall over when you raise your arms, so the muscle activity in the legs disappears,” Layne says.

Layne developed a primitive space boot several years ago that incorporated an air bladder that applied static pressure to the bottom of the foot. The idea was to trick a free-floating astronaut’s nervous system by mimicking the pressure one’s feet feel while standing on the ground.

Astronauts on board the Russian Space Station MIR wore Layne’s first boots, and data collected from those flights indicated that continuous foot pressure from the boots resulted in enhanced muscle activity in the crew’s legs as they moved about their daily routine.

Now Layne and his UH colleagues are taking space boot technology another step forward.
Working with mechanical engineers in the UH Cullen College of Engineering, Layne has improved the foot-pressure technology. The researchers replaced the static air bladder with a dynamic system that uses a series of mechanical plungers to push against the bottom of the feet in patterns that mimic what feet actually feel while in action.

When you learn a new skill, like juggling, your muscles and nervous system work together to form a series of connections. The more you perform that activity, the stronger those connections are reinforced. This “use it or lose it” principal works for your neural connections as well as for your muscles, Layne says.

“While you’re in microgravity or bed-ridden, and not getting sensory input from the bottom of your feet, neither your leg muscles nor the nerves controlling their movement are active. You lose not only muscle mass, but also the ability to control your muscles in a coordinated fashion to produce efficient movement,” he says.

During long-duration space flights, such as on board the International Space Station, the successful completion of mission objectives is dependent on physical performance. Also, the maintenance of the astronauts’ health and physical condition upon their return to Earth – or upon landing on Mars – is a primary concern, Layne says.

Layne and his colleagues are in the process of developing a new boot-type device based on the dynamic foot pressure concept, one that could be worn by astronauts to serve as a supplement to exercise during space flight, as well as an effective rehabilitation technique for bed-ridden patients. “We want to optimize the patterns of sensory stimulation as well as the amount and time of pressure application. The goal is not only to reduce muscle loss but also help the nervous system retain those connections so that you can get back to optimal performance as quickly as possible, or return to some degree of functionality if you’re bed-ridden.”

The paper to be published in Neuroscience Letters describes the temporal relationship between the sensory input to the foot and the subsequent muscle activation in the legs. Human subjects had the dynamic pressure device hooked up to their feet while sensors placed on their skin picked up changes in the electrical activity in their leg muscles, which indicates the muscle is contracting.

“We could control when the pressure was applied to our subjects’ feet, and vary the application relative to when the subjects contracted their leg muscles,” Layne says. The study indicates applying the stimulus immediately before a leg muscle contracts enhances muscle activity more than stimulating the foot during or after the contraction.

Currently, Layne and his colleagues are conducting studies to determine whether foot pressure can actually prevent muscle wasting, and if so, by how much.

Amanda Siegfried | University of Houston
Further information:
http://www.uh.edu/admin/media/sciencelist.html

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>