Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Foot pressure device may stamp out muscle loss


Research to Aid Astronauts Also Could Help Bed-Ridden Patients on Earth

These boots weren’t made for walkin’, but “space boots” under development at the University of Houston may help astronauts stay healthy and readjust more quickly to walking again on terra firma.

University of Houston researchers have developed technology that could help combat the loss of muscle mass, strength and coordination experienced by astronauts during long-duration stints in microgravity. The system also may have earth-bound applications in rehabilitation therapy for bed-ridden patients.

Charles Layne, associate professor and chair of the UH Department of Health and Human Performance, and his colleagues developed a mechanical system that stimulates muscle activity in the legs by attempting to mimic the natural sensory input feet receive while walking, running or jumping.

“We’re not using electricity to directly stimulate the leg muscles, but rather a series of plungers that push against the bottom of the foot in specific patterns, which mimics the pressure one feels while walking around in normal gravity,” Layne says.

The researchers will publish a study in an upcoming issue of the journal Neuroscience Letters that describes how mechanical foot stimulation generates enhanced neuromuscular activity in the legs. Layne and his graduate student, Katherine Forth, will give presentations about their work during the World Space Congress 2002 in Houston Oct. 10-19.

In normal gravity, when you move your arms while standing or walking, muscles in your legs and trunk contract in certain ways to regulate your center of gravity and keep you from falling down.

But in space-based experiments, Layne and other researchers have previously found that when you’re floating free in space and move your arms around, postural activity in the legs and back is reduced. “This is the same situation that occurs when you lie on your back on the ground. In a stable posture, there’s no opportunity to fall over when you raise your arms, so the muscle activity in the legs disappears,” Layne says.

Layne developed a primitive space boot several years ago that incorporated an air bladder that applied static pressure to the bottom of the foot. The idea was to trick a free-floating astronaut’s nervous system by mimicking the pressure one’s feet feel while standing on the ground.

Astronauts on board the Russian Space Station MIR wore Layne’s first boots, and data collected from those flights indicated that continuous foot pressure from the boots resulted in enhanced muscle activity in the crew’s legs as they moved about their daily routine.

Now Layne and his UH colleagues are taking space boot technology another step forward.
Working with mechanical engineers in the UH Cullen College of Engineering, Layne has improved the foot-pressure technology. The researchers replaced the static air bladder with a dynamic system that uses a series of mechanical plungers to push against the bottom of the feet in patterns that mimic what feet actually feel while in action.

When you learn a new skill, like juggling, your muscles and nervous system work together to form a series of connections. The more you perform that activity, the stronger those connections are reinforced. This “use it or lose it” principal works for your neural connections as well as for your muscles, Layne says.

“While you’re in microgravity or bed-ridden, and not getting sensory input from the bottom of your feet, neither your leg muscles nor the nerves controlling their movement are active. You lose not only muscle mass, but also the ability to control your muscles in a coordinated fashion to produce efficient movement,” he says.

During long-duration space flights, such as on board the International Space Station, the successful completion of mission objectives is dependent on physical performance. Also, the maintenance of the astronauts’ health and physical condition upon their return to Earth – or upon landing on Mars – is a primary concern, Layne says.

Layne and his colleagues are in the process of developing a new boot-type device based on the dynamic foot pressure concept, one that could be worn by astronauts to serve as a supplement to exercise during space flight, as well as an effective rehabilitation technique for bed-ridden patients. “We want to optimize the patterns of sensory stimulation as well as the amount and time of pressure application. The goal is not only to reduce muscle loss but also help the nervous system retain those connections so that you can get back to optimal performance as quickly as possible, or return to some degree of functionality if you’re bed-ridden.”

The paper to be published in Neuroscience Letters describes the temporal relationship between the sensory input to the foot and the subsequent muscle activation in the legs. Human subjects had the dynamic pressure device hooked up to their feet while sensors placed on their skin picked up changes in the electrical activity in their leg muscles, which indicates the muscle is contracting.

“We could control when the pressure was applied to our subjects’ feet, and vary the application relative to when the subjects contracted their leg muscles,” Layne says. The study indicates applying the stimulus immediately before a leg muscle contracts enhances muscle activity more than stimulating the foot during or after the contraction.

Currently, Layne and his colleagues are conducting studies to determine whether foot pressure can actually prevent muscle wasting, and if so, by how much.

Amanda Siegfried | University of Houston
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>