Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh Cancer Institute discovers proteins linked to colon cancer

08.10.2002


Findings published in this month’s issue of Clinical Cancer Research and featured on the journal’s cover, may bring researchers one-step closer to the development of tumor markers to detect colon cancer early, before it has had a chance to spread and when it is easier to cure, say researchers from the University of Pittsburgh Cancer Institute (UPCI). These tumor markers – elevated levels of proteins or other substances in the blood, urine or tissue that indicate the presence of cancer – also could help identify which patients with colon cancer are more likely to develop recurrent disease.



In the study, Robert Getzenberg, Ph.D., senior author and associate professor of urology, pathology and pharmacology at the University of Pittsburgh and co-director, Prostate and Urologic Cancer Program, UPCI and colleagues analyzed cancerous tissue resulting from colon cancer that had spread to the liver – the most common site for colon cancer to recur – and found three proteins present in the diseased liver tissue that were not present in normal liver tissue. The findings add to previous findings published earlier this year in the journal Cancer Research in which the same researchers identified four different proteins present in colon cancer tumor samples that were not found in normal colon tissue.

"Identifying a specific and sensitive tumor marker that would allow reliable early detection of colon cancer and predict the potential for the cancer to spread or recur would be of great benefit to patients," said Dr. Getzenberg. "Early diagnosis of recurrent colon cancer is critical to effective treatment of the disease, however, colon cancer metastases are very difficult to pick up early. Thirty-five to 40 percent of all patients with colon cancer have recurrent disease and the majority of these patients cannot be cured and will eventually die."


The researchers analyzed a subset of proteins in the cell nucleus called nuclear matrix proteins, or NMPs, to examine the cellular changes in tissue that occur as colon cancer grows.

"NMPs appear to represent the earliest changes that occur in cells, which is why we wanted to look carefully at these proteins in both studies," explained Dr. Getzenberg. "In the first study, we looked at the specific NMPs present in cancerous colon tissue and in the second, we examined the NMPs present in liver metastases that had resulted from colon cancer. We found that there are several proteins present in the diseased tissue that are not present in the normal tissue, indicating that these proteins are specifically linked to the development of colon cancer."

"These are promising results since microscopic changes indicative of liver metastasis are not currently detectable by conventional imaging studies," said Robert Schoen, M.D., M.P.H., study co-author and associate professor of medicine, division of gastroenterology, hepatology and nutrition, University of Pittsburgh and director, Colorectal Cancer Prevention Program, UPCI. "Carcinoembryonic antigen, or CEA, a tumor-associated glycoprotein, is the most commonly used blood test to survey patients treated for colorectal cancer for possible recurrence, but it is only somewhat useful since only half of colorectal cancers shed CEA levels sufficient for detection and often, by the time a rising CEA is detected, the tumor is too far advanced for effective re-treatment. Identifying the changes in NMPs that occur from colon cancer may be a more promising method to diagnosis the disease early, as well as a way to identify patients at greater risk for cancer recurrence."

In subsequent studies, the researchers plan to develop antibodies against the identified proteins to detect their presence in tissue, serum and stool samples from patients. "By identifying patients who are more likely to experience cancer recurrence, based on the presence of specific proteins, we can potentially detect metastases earlier and target therapy more precisely and effectively to that patient," said Dr. Getzenberg.

Colorectal cancer is a worldwide public health problem. In the United States, colorectal cancer accounts for 11 percent of all cancers with 147,300 new cases and 56,000 deaths estimated in 2002. For patients with advanced disease, five-year survival rates are 10-20 percent, however, when colon cancer is diagnosed at an early, localized stage, the five-year survival rate is 90 percent.

ADDITIONAL CONTACT:

Jocelyn Uhl
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: UhlJH@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upci.upmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>