Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh Cancer Institute discovers proteins linked to colon cancer

08.10.2002


Findings published in this month’s issue of Clinical Cancer Research and featured on the journal’s cover, may bring researchers one-step closer to the development of tumor markers to detect colon cancer early, before it has had a chance to spread and when it is easier to cure, say researchers from the University of Pittsburgh Cancer Institute (UPCI). These tumor markers – elevated levels of proteins or other substances in the blood, urine or tissue that indicate the presence of cancer – also could help identify which patients with colon cancer are more likely to develop recurrent disease.



In the study, Robert Getzenberg, Ph.D., senior author and associate professor of urology, pathology and pharmacology at the University of Pittsburgh and co-director, Prostate and Urologic Cancer Program, UPCI and colleagues analyzed cancerous tissue resulting from colon cancer that had spread to the liver – the most common site for colon cancer to recur – and found three proteins present in the diseased liver tissue that were not present in normal liver tissue. The findings add to previous findings published earlier this year in the journal Cancer Research in which the same researchers identified four different proteins present in colon cancer tumor samples that were not found in normal colon tissue.

"Identifying a specific and sensitive tumor marker that would allow reliable early detection of colon cancer and predict the potential for the cancer to spread or recur would be of great benefit to patients," said Dr. Getzenberg. "Early diagnosis of recurrent colon cancer is critical to effective treatment of the disease, however, colon cancer metastases are very difficult to pick up early. Thirty-five to 40 percent of all patients with colon cancer have recurrent disease and the majority of these patients cannot be cured and will eventually die."


The researchers analyzed a subset of proteins in the cell nucleus called nuclear matrix proteins, or NMPs, to examine the cellular changes in tissue that occur as colon cancer grows.

"NMPs appear to represent the earliest changes that occur in cells, which is why we wanted to look carefully at these proteins in both studies," explained Dr. Getzenberg. "In the first study, we looked at the specific NMPs present in cancerous colon tissue and in the second, we examined the NMPs present in liver metastases that had resulted from colon cancer. We found that there are several proteins present in the diseased tissue that are not present in the normal tissue, indicating that these proteins are specifically linked to the development of colon cancer."

"These are promising results since microscopic changes indicative of liver metastasis are not currently detectable by conventional imaging studies," said Robert Schoen, M.D., M.P.H., study co-author and associate professor of medicine, division of gastroenterology, hepatology and nutrition, University of Pittsburgh and director, Colorectal Cancer Prevention Program, UPCI. "Carcinoembryonic antigen, or CEA, a tumor-associated glycoprotein, is the most commonly used blood test to survey patients treated for colorectal cancer for possible recurrence, but it is only somewhat useful since only half of colorectal cancers shed CEA levels sufficient for detection and often, by the time a rising CEA is detected, the tumor is too far advanced for effective re-treatment. Identifying the changes in NMPs that occur from colon cancer may be a more promising method to diagnosis the disease early, as well as a way to identify patients at greater risk for cancer recurrence."

In subsequent studies, the researchers plan to develop antibodies against the identified proteins to detect their presence in tissue, serum and stool samples from patients. "By identifying patients who are more likely to experience cancer recurrence, based on the presence of specific proteins, we can potentially detect metastases earlier and target therapy more precisely and effectively to that patient," said Dr. Getzenberg.

Colorectal cancer is a worldwide public health problem. In the United States, colorectal cancer accounts for 11 percent of all cancers with 147,300 new cases and 56,000 deaths estimated in 2002. For patients with advanced disease, five-year survival rates are 10-20 percent, however, when colon cancer is diagnosed at an early, localized stage, the five-year survival rate is 90 percent.

ADDITIONAL CONTACT:

Jocelyn Uhl
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: UhlJH@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upci.upmc.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>