Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh Cancer Institute discovers proteins linked to colon cancer

08.10.2002


Findings published in this month’s issue of Clinical Cancer Research and featured on the journal’s cover, may bring researchers one-step closer to the development of tumor markers to detect colon cancer early, before it has had a chance to spread and when it is easier to cure, say researchers from the University of Pittsburgh Cancer Institute (UPCI). These tumor markers – elevated levels of proteins or other substances in the blood, urine or tissue that indicate the presence of cancer – also could help identify which patients with colon cancer are more likely to develop recurrent disease.



In the study, Robert Getzenberg, Ph.D., senior author and associate professor of urology, pathology and pharmacology at the University of Pittsburgh and co-director, Prostate and Urologic Cancer Program, UPCI and colleagues analyzed cancerous tissue resulting from colon cancer that had spread to the liver – the most common site for colon cancer to recur – and found three proteins present in the diseased liver tissue that were not present in normal liver tissue. The findings add to previous findings published earlier this year in the journal Cancer Research in which the same researchers identified four different proteins present in colon cancer tumor samples that were not found in normal colon tissue.

"Identifying a specific and sensitive tumor marker that would allow reliable early detection of colon cancer and predict the potential for the cancer to spread or recur would be of great benefit to patients," said Dr. Getzenberg. "Early diagnosis of recurrent colon cancer is critical to effective treatment of the disease, however, colon cancer metastases are very difficult to pick up early. Thirty-five to 40 percent of all patients with colon cancer have recurrent disease and the majority of these patients cannot be cured and will eventually die."


The researchers analyzed a subset of proteins in the cell nucleus called nuclear matrix proteins, or NMPs, to examine the cellular changes in tissue that occur as colon cancer grows.

"NMPs appear to represent the earliest changes that occur in cells, which is why we wanted to look carefully at these proteins in both studies," explained Dr. Getzenberg. "In the first study, we looked at the specific NMPs present in cancerous colon tissue and in the second, we examined the NMPs present in liver metastases that had resulted from colon cancer. We found that there are several proteins present in the diseased tissue that are not present in the normal tissue, indicating that these proteins are specifically linked to the development of colon cancer."

"These are promising results since microscopic changes indicative of liver metastasis are not currently detectable by conventional imaging studies," said Robert Schoen, M.D., M.P.H., study co-author and associate professor of medicine, division of gastroenterology, hepatology and nutrition, University of Pittsburgh and director, Colorectal Cancer Prevention Program, UPCI. "Carcinoembryonic antigen, or CEA, a tumor-associated glycoprotein, is the most commonly used blood test to survey patients treated for colorectal cancer for possible recurrence, but it is only somewhat useful since only half of colorectal cancers shed CEA levels sufficient for detection and often, by the time a rising CEA is detected, the tumor is too far advanced for effective re-treatment. Identifying the changes in NMPs that occur from colon cancer may be a more promising method to diagnosis the disease early, as well as a way to identify patients at greater risk for cancer recurrence."

In subsequent studies, the researchers plan to develop antibodies against the identified proteins to detect their presence in tissue, serum and stool samples from patients. "By identifying patients who are more likely to experience cancer recurrence, based on the presence of specific proteins, we can potentially detect metastases earlier and target therapy more precisely and effectively to that patient," said Dr. Getzenberg.

Colorectal cancer is a worldwide public health problem. In the United States, colorectal cancer accounts for 11 percent of all cancers with 147,300 new cases and 56,000 deaths estimated in 2002. For patients with advanced disease, five-year survival rates are 10-20 percent, however, when colon cancer is diagnosed at an early, localized stage, the five-year survival rate is 90 percent.

ADDITIONAL CONTACT:

Jocelyn Uhl
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL: UhlJH@upmc.edu

Clare Collins | EurekAlert!
Further information:
http://www.upci.upmc.edu

More articles from Health and Medicine:

nachricht New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome
28.07.2017 | University of California - San Diego

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>