Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Pittsburgh Cancer Institute discovers proteins linked to colon cancer


Findings published in this month’s issue of Clinical Cancer Research and featured on the journal’s cover, may bring researchers one-step closer to the development of tumor markers to detect colon cancer early, before it has had a chance to spread and when it is easier to cure, say researchers from the University of Pittsburgh Cancer Institute (UPCI). These tumor markers – elevated levels of proteins or other substances in the blood, urine or tissue that indicate the presence of cancer – also could help identify which patients with colon cancer are more likely to develop recurrent disease.

In the study, Robert Getzenberg, Ph.D., senior author and associate professor of urology, pathology and pharmacology at the University of Pittsburgh and co-director, Prostate and Urologic Cancer Program, UPCI and colleagues analyzed cancerous tissue resulting from colon cancer that had spread to the liver – the most common site for colon cancer to recur – and found three proteins present in the diseased liver tissue that were not present in normal liver tissue. The findings add to previous findings published earlier this year in the journal Cancer Research in which the same researchers identified four different proteins present in colon cancer tumor samples that were not found in normal colon tissue.

"Identifying a specific and sensitive tumor marker that would allow reliable early detection of colon cancer and predict the potential for the cancer to spread or recur would be of great benefit to patients," said Dr. Getzenberg. "Early diagnosis of recurrent colon cancer is critical to effective treatment of the disease, however, colon cancer metastases are very difficult to pick up early. Thirty-five to 40 percent of all patients with colon cancer have recurrent disease and the majority of these patients cannot be cured and will eventually die."

The researchers analyzed a subset of proteins in the cell nucleus called nuclear matrix proteins, or NMPs, to examine the cellular changes in tissue that occur as colon cancer grows.

"NMPs appear to represent the earliest changes that occur in cells, which is why we wanted to look carefully at these proteins in both studies," explained Dr. Getzenberg. "In the first study, we looked at the specific NMPs present in cancerous colon tissue and in the second, we examined the NMPs present in liver metastases that had resulted from colon cancer. We found that there are several proteins present in the diseased tissue that are not present in the normal tissue, indicating that these proteins are specifically linked to the development of colon cancer."

"These are promising results since microscopic changes indicative of liver metastasis are not currently detectable by conventional imaging studies," said Robert Schoen, M.D., M.P.H., study co-author and associate professor of medicine, division of gastroenterology, hepatology and nutrition, University of Pittsburgh and director, Colorectal Cancer Prevention Program, UPCI. "Carcinoembryonic antigen, or CEA, a tumor-associated glycoprotein, is the most commonly used blood test to survey patients treated for colorectal cancer for possible recurrence, but it is only somewhat useful since only half of colorectal cancers shed CEA levels sufficient for detection and often, by the time a rising CEA is detected, the tumor is too far advanced for effective re-treatment. Identifying the changes in NMPs that occur from colon cancer may be a more promising method to diagnosis the disease early, as well as a way to identify patients at greater risk for cancer recurrence."

In subsequent studies, the researchers plan to develop antibodies against the identified proteins to detect their presence in tissue, serum and stool samples from patients. "By identifying patients who are more likely to experience cancer recurrence, based on the presence of specific proteins, we can potentially detect metastases earlier and target therapy more precisely and effectively to that patient," said Dr. Getzenberg.

Colorectal cancer is a worldwide public health problem. In the United States, colorectal cancer accounts for 11 percent of all cancers with 147,300 new cases and 56,000 deaths estimated in 2002. For patients with advanced disease, five-year survival rates are 10-20 percent, however, when colon cancer is diagnosed at an early, localized stage, the five-year survival rate is 90 percent.


Jocelyn Uhl
PHONE: 412-647-3555
FAX: 412-624-3184

Clare Collins | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>