Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nerves from the ribs may restore leg movement in spinal cord injury

07.10.2002


Researchers receive grant to use robots to improve walking



Irvine, Calif. -- Paralysis from spinal cord injury was significantly reversed by adding tiny nerves from the rib cage and mixing them with a powerful growth inducer found in most nerve cells, a UC Irvine and Long Beach Veterans Administration Medical Center study has found.

The study, conducted in rats, suggests that nerve cells can be inserted and stimulated to grow through damaged areas of the spinal cord, perhaps leading to better treatments for spinal cord injury. The research is part of a wave of studies challenging the conventional wisdom that severed nerves in the spinal cord are nearly impossible to regenerate. The study appears in the October issue of the Journal of Neurotrauma.


Dr. Vernon Lin, professor of physical medicine at UCI and director of the Spinal Cord Injury Group at the Long Beach V.A., and his colleagues found that grafting nerves from the rib cage and adding the growth stimulator, a molecule called aFGF, partially restored hind leg movement in rats that had their spinal cords severed.

"By using tiny nerves from the rib cage as cables connecting the severed spinal cord, we were able to get some improvement in leg function," Lin said. "Regeneration is considered very difficult because the damaged area apparently inhibits growth of new nerve-cell connections. This study gets us closer to arriving at the right combination of growth factors, nerve cells and physical stimulation that overcome these inhibitions and successfully treat spinal cord injury."

Lin and his team found that 12 rats with severed spinal cords were able to move their hind legs again after treatment with both the aFGF and the nerve grafts, while rats that had either the aFGF or nerve grafts alone showed nearly no improvement. Rats receiving both the growth factor and the nerve cell grafts could support some of their weight on their back legs.

The growth factor aFGF is normally produced in the spinal cord by nerve cells, but scientists suspect that it is stored and only used when nerve cells are damaged. Previous studies have shown that adding aFGF can stimulate growth in individual nerve cells in the laboratory.

The rats’ movements were measured using a tool called a BBB score. Normal movement rates a BBB score of about 21. Six months after the rats were treated, the animals that received the aFGF and nerve grafts had scores between six and seven. The other animals did not score higher than one on the scale.

"While not a perfectly normal score of locomotion, the treatments did allow the rats to step forward and put weight on their hind legs," Lin said. "We also found that the nerves in the leg below the injury site were once again receiving nerve impulses from the brain. We believe that eventually, we may be able to find the right mix of factors and physical stimulation all working together to improve this restored movement to more normal levels."

The researchers also plan to study the use of robots to aid in the placement and maintenance of nerve cells that are grafted into an injured area, to help improve movement. They recently received a $600,000 research grant from the Veterans Administration to continue their work in designing and testing robots that could help in maintaining the gait necessary to walk. Currently, they are testing the ability of the robots to accurately maintain a walking gait in rats. Eventually, the researchers hope to test the robots in humans and determine if the machines are actually helping restore the ability to walk after spinal cord injury.


Lin’s colleagues in the study include Yu-Shang Lee of UCI’s College of Medicine and Ian Hsiao of UCI and the Long Beach V.A. Medical Center.

Andrew Porterfield | EurekAlert!
Further information:
http://www.uci.edu/
http://www.today.uci.edu

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>