Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows why some immune systems control HIV


Scientists are beginning to change their thinking about why the immune systems of most people infected with HIV cannot control the spread of the virus while the immune systems of a rare group of individuals, called long-term nonprogressors, can. For some time, scientists thought that people who could not control HIV had too few HIV-fighting white blood cells called CD8+ T cells. However, a new study suggests the difference is not the number but the quality of these cells: both nonprogressors and others have about the same number of HIV-fighting CD8+ T cells, but the cells of nonprogressors function better.

"Understanding the mechanisms by which the immune systems of long-term nonprogressors control HIV is important to our development of effective vaccines," says Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID). "Studies like this one, which reveal basic knowledge about how the immune system interacts with HIV, form the foundation of our effort to fight this disease." Details of the study, conducted by NIAID scientists, will appear on October 7 in the advanced online issue of Nature Immunology.

Instead of attacking HIV directly, CD8+ cells inhibit virus spread by killing off other immune system cells infected with HIV. "For some time we have known that even patients who cannot control HIV maintain high numbers of HIV-specific CD8+ T cells," says senior author Mark Connors, M.D., of NIAID’s Laboratory of Immunoregulation. However, this study represents the first time scientists have observed a difference in the HIV-specific CD8+ T-cell response of nonprogressors, he says. This study also suggests a mechanism whereby the CD8+ T cells of nonprogressors control HIV and those of most individuals do not.

Dr. Connors and colleagues closely examined the immune systems of 40 people infected with HIV, including a group of about 15 nonprogressors - people who have controlled HIV for up to 20 years without antiretroviral therapy. The researchers found no significant difference in the number of HIV-fighting CD8+ cells between nonprogressors and the others. Instead, the scientists found that the nonprogressors’ cells were better able to divide and proliferate when called on to go into action; they also produced higher levels of a molecule called perforin, which helps them to kill off cells infected with HIV.

"Some of the newer techniques used in this study enabled us to see the functional differences in the CD8+ T cells of the two groups," says lead author Stephen Migueles, M.D., also at NIAID’s Laboratory of Immunoregulation. "The CD8+ T cells of people in the study who did not control HIV had retained only a limited ability to divide and produce perforin."

This finding is especially important to HIV vaccine research efforts, says Dr. Connors, because many candidate HIV vaccines attempt to induce a strong CD8+ T cell response. New knowledge about CD8+ T-cell function opened up by this line of research might lead to preventive vaccines that avoid the development of poorly functioning CD8+ T cells. In addition, this research might lead to therapeutic vaccines for HIV-infected people that improve the function of their CD8+ T cells and control HIV infection.

Next, Dr. Connors and colleagues plan to analyze an even broader array of differences between the CD8+ T cells of nonprogressors and others infected with HIV, seeking to understand what causes the poor function of most HIV-infected people’s CD8+ T cells.

NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Jeff Minerd | EurekAlert!

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>