Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows why some immune systems control HIV

07.10.2002


Scientists are beginning to change their thinking about why the immune systems of most people infected with HIV cannot control the spread of the virus while the immune systems of a rare group of individuals, called long-term nonprogressors, can. For some time, scientists thought that people who could not control HIV had too few HIV-fighting white blood cells called CD8+ T cells. However, a new study suggests the difference is not the number but the quality of these cells: both nonprogressors and others have about the same number of HIV-fighting CD8+ T cells, but the cells of nonprogressors function better.



"Understanding the mechanisms by which the immune systems of long-term nonprogressors control HIV is important to our development of effective vaccines," says Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID). "Studies like this one, which reveal basic knowledge about how the immune system interacts with HIV, form the foundation of our effort to fight this disease." Details of the study, conducted by NIAID scientists, will appear on October 7 in the advanced online issue of Nature Immunology.

Instead of attacking HIV directly, CD8+ cells inhibit virus spread by killing off other immune system cells infected with HIV. "For some time we have known that even patients who cannot control HIV maintain high numbers of HIV-specific CD8+ T cells," says senior author Mark Connors, M.D., of NIAID’s Laboratory of Immunoregulation. However, this study represents the first time scientists have observed a difference in the HIV-specific CD8+ T-cell response of nonprogressors, he says. This study also suggests a mechanism whereby the CD8+ T cells of nonprogressors control HIV and those of most individuals do not.


Dr. Connors and colleagues closely examined the immune systems of 40 people infected with HIV, including a group of about 15 nonprogressors - people who have controlled HIV for up to 20 years without antiretroviral therapy. The researchers found no significant difference in the number of HIV-fighting CD8+ cells between nonprogressors and the others. Instead, the scientists found that the nonprogressors’ cells were better able to divide and proliferate when called on to go into action; they also produced higher levels of a molecule called perforin, which helps them to kill off cells infected with HIV.

"Some of the newer techniques used in this study enabled us to see the functional differences in the CD8+ T cells of the two groups," says lead author Stephen Migueles, M.D., also at NIAID’s Laboratory of Immunoregulation. "The CD8+ T cells of people in the study who did not control HIV had retained only a limited ability to divide and produce perforin."

This finding is especially important to HIV vaccine research efforts, says Dr. Connors, because many candidate HIV vaccines attempt to induce a strong CD8+ T cell response. New knowledge about CD8+ T-cell function opened up by this line of research might lead to preventive vaccines that avoid the development of poorly functioning CD8+ T cells. In addition, this research might lead to therapeutic vaccines for HIV-infected people that improve the function of their CD8+ T cells and control HIV infection.

Next, Dr. Connors and colleagues plan to analyze an even broader array of differences between the CD8+ T cells of nonprogressors and others infected with HIV, seeking to understand what causes the poor function of most HIV-infected people’s CD8+ T cells.


NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Jeff Minerd | EurekAlert!

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>