Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows why some immune systems control HIV

07.10.2002


Scientists are beginning to change their thinking about why the immune systems of most people infected with HIV cannot control the spread of the virus while the immune systems of a rare group of individuals, called long-term nonprogressors, can. For some time, scientists thought that people who could not control HIV had too few HIV-fighting white blood cells called CD8+ T cells. However, a new study suggests the difference is not the number but the quality of these cells: both nonprogressors and others have about the same number of HIV-fighting CD8+ T cells, but the cells of nonprogressors function better.



"Understanding the mechanisms by which the immune systems of long-term nonprogressors control HIV is important to our development of effective vaccines," says Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID). "Studies like this one, which reveal basic knowledge about how the immune system interacts with HIV, form the foundation of our effort to fight this disease." Details of the study, conducted by NIAID scientists, will appear on October 7 in the advanced online issue of Nature Immunology.

Instead of attacking HIV directly, CD8+ cells inhibit virus spread by killing off other immune system cells infected with HIV. "For some time we have known that even patients who cannot control HIV maintain high numbers of HIV-specific CD8+ T cells," says senior author Mark Connors, M.D., of NIAID’s Laboratory of Immunoregulation. However, this study represents the first time scientists have observed a difference in the HIV-specific CD8+ T-cell response of nonprogressors, he says. This study also suggests a mechanism whereby the CD8+ T cells of nonprogressors control HIV and those of most individuals do not.


Dr. Connors and colleagues closely examined the immune systems of 40 people infected with HIV, including a group of about 15 nonprogressors - people who have controlled HIV for up to 20 years without antiretroviral therapy. The researchers found no significant difference in the number of HIV-fighting CD8+ cells between nonprogressors and the others. Instead, the scientists found that the nonprogressors’ cells were better able to divide and proliferate when called on to go into action; they also produced higher levels of a molecule called perforin, which helps them to kill off cells infected with HIV.

"Some of the newer techniques used in this study enabled us to see the functional differences in the CD8+ T cells of the two groups," says lead author Stephen Migueles, M.D., also at NIAID’s Laboratory of Immunoregulation. "The CD8+ T cells of people in the study who did not control HIV had retained only a limited ability to divide and produce perforin."

This finding is especially important to HIV vaccine research efforts, says Dr. Connors, because many candidate HIV vaccines attempt to induce a strong CD8+ T cell response. New knowledge about CD8+ T-cell function opened up by this line of research might lead to preventive vaccines that avoid the development of poorly functioning CD8+ T cells. In addition, this research might lead to therapeutic vaccines for HIV-infected people that improve the function of their CD8+ T cells and control HIV infection.

Next, Dr. Connors and colleagues plan to analyze an even broader array of differences between the CD8+ T cells of nonprogressors and others infected with HIV, seeking to understand what causes the poor function of most HIV-infected people’s CD8+ T cells.


NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Jeff Minerd | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>