Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows why some immune systems control HIV

07.10.2002


Scientists are beginning to change their thinking about why the immune systems of most people infected with HIV cannot control the spread of the virus while the immune systems of a rare group of individuals, called long-term nonprogressors, can. For some time, scientists thought that people who could not control HIV had too few HIV-fighting white blood cells called CD8+ T cells. However, a new study suggests the difference is not the number but the quality of these cells: both nonprogressors and others have about the same number of HIV-fighting CD8+ T cells, but the cells of nonprogressors function better.



"Understanding the mechanisms by which the immune systems of long-term nonprogressors control HIV is important to our development of effective vaccines," says Anthony S. Fauci, director of the National Institute of Allergy and Infectious Diseases (NIAID). "Studies like this one, which reveal basic knowledge about how the immune system interacts with HIV, form the foundation of our effort to fight this disease." Details of the study, conducted by NIAID scientists, will appear on October 7 in the advanced online issue of Nature Immunology.

Instead of attacking HIV directly, CD8+ cells inhibit virus spread by killing off other immune system cells infected with HIV. "For some time we have known that even patients who cannot control HIV maintain high numbers of HIV-specific CD8+ T cells," says senior author Mark Connors, M.D., of NIAID’s Laboratory of Immunoregulation. However, this study represents the first time scientists have observed a difference in the HIV-specific CD8+ T-cell response of nonprogressors, he says. This study also suggests a mechanism whereby the CD8+ T cells of nonprogressors control HIV and those of most individuals do not.


Dr. Connors and colleagues closely examined the immune systems of 40 people infected with HIV, including a group of about 15 nonprogressors - people who have controlled HIV for up to 20 years without antiretroviral therapy. The researchers found no significant difference in the number of HIV-fighting CD8+ cells between nonprogressors and the others. Instead, the scientists found that the nonprogressors’ cells were better able to divide and proliferate when called on to go into action; they also produced higher levels of a molecule called perforin, which helps them to kill off cells infected with HIV.

"Some of the newer techniques used in this study enabled us to see the functional differences in the CD8+ T cells of the two groups," says lead author Stephen Migueles, M.D., also at NIAID’s Laboratory of Immunoregulation. "The CD8+ T cells of people in the study who did not control HIV had retained only a limited ability to divide and produce perforin."

This finding is especially important to HIV vaccine research efforts, says Dr. Connors, because many candidate HIV vaccines attempt to induce a strong CD8+ T cell response. New knowledge about CD8+ T-cell function opened up by this line of research might lead to preventive vaccines that avoid the development of poorly functioning CD8+ T cells. In addition, this research might lead to therapeutic vaccines for HIV-infected people that improve the function of their CD8+ T cells and control HIV infection.

Next, Dr. Connors and colleagues plan to analyze an even broader array of differences between the CD8+ T cells of nonprogressors and others infected with HIV, seeking to understand what causes the poor function of most HIV-infected people’s CD8+ T cells.


NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, malaria, autoimmune disorders, asthma and allergies.

Jeff Minerd | EurekAlert!

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>