Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiac MRI Provides New 3-D Images of Beating Heart

04.10.2002


For Karen Pressley, Duke’s new Cardiovascular Magnetic Resonance Center revealed critical details of her heart that could enable her to have an angioplasty.



Physicians at her home medical center in Fort Walton Beach, Fla. were reluctant to perform a heart procedure on 55-year-old Pressley because conventional techniques could not determine the extent of possible heart muscle death from a recent silent heart attack. So Pressley was referred to Duke University Medical Center, where cardiologists used magnetic resonance imaging (MRI) technology to clearly distinguish dead from damaged, but still living, heart muscle.

“My doctors in Florida didn’t want to perform an angioplasty until they could get a better view of my heart,” Pressley said. “The MRI scan they performed at Duke showed that there was very little muscle death. That meant there was a good chance that angioplasty could restore function to my heart. It is a great relief to know that I can have the procedure.”


Duke cardiologists estimate that about 30 percent of patients with heart disease -- like Pressley -- find that conventional methods for imaging the heart fall short in providing accurate information on which to guide treatment. The cardiologists believe that cardiac MRI can help this significant number of heart patients.

Pressley is among the first patients to have their hearts “scanned” at the new Duke Cardiovascular Magnetic Resonance Center (DCMRC), the only facility in Duke’s service region -- and the first of its kind nationwide -- devoted exclusively to cardiovascular MRI. Unlike similar facilities where MRI machines may be used for many different clinical problems, the Duke scanner is devoted entirely to imaging the heart.

The DCMRC is directed by biomedical engineer Robert Judd, Ph.D., and cardiologist Raymond Kim, M.D. They say that MRI provides crisp 3-D views of cardiac anatomy with no interference from adjacent bone or air. Its image quality surpasses that of echocardiography -- a more common imaging technique -- and MRI is able to capture views that echocardiography cannot.

Cardiac MRI can show physicians how well the heart muscle is contracting, as well as precisely reveal areas of damaged tissue. The non-invasive, radiation-free technique is especially useful for evaluating such conditions as coronary artery disease, heart failure and congenital heart disease.

Already a valuable diagnostic technique, cardiac MRI is still in its infancy, according to Judd.

“It wasn’t until a few years ago that engineers developed scanners fast enough to clearly capture a beating heart,” Judd said. “The discipline is still defining itself. We want to advance the field by improving existing cardiovascular imaging techniques and also by creating entirely novel ways to look at the heart and its vessels.”

During an MRI examination, a patient is guided through the cavity of a large doughnut-shaped magnet. The magnet causes atomic nuclei in cells to vibrate and give off characteristic “radio” signals, which are then converted by computers into three-dimensional images of the heart and its structures. While MRI technology itself is 20 years old, only in the past few years has technology improved to the point where accurate images of moving tissues can be taken.

“For the first time, we can look at the heart in a totally non-invasive way with a precision not available with other techniques,” said Pascal Goldschmidt, M.D., chief of the division of cardiology at Duke. “It’s a like an astronomer being able to use the Hubbell telescope for the first time to look at galaxies never visible before. The detail MRI provides is the big difference -- the exquisite definition of layers of tissue that form the heart and the membranes that surround the heart is unique to MRI.”

In addition to using the machine to help cardiologists diagnose heart problems, the DCMRC will also be the site of concentrated research aimed at developing new applications of MRI technology for cardiology. Just as importantly, the researchers say, the center offers to first advanced cardiac MRI training program to teach the next generation of cardiologists in the promising new technology.

The center will devote about 40 percent of its resources to research, including basic research to improve the detection of salvageable heart tissue, research to improve imaging technology and clinical trials that use MRI to determine how new therapies affect heart function.

For Kim, being able to distinguish damaged from dead heart tissue is one of the main early benefits of MRI technology.

“With other techniques, damaged tissue can look dead,” Kim explained. “Being able to distinguish dead tissue from damaged -- but still alive tissue -- is crucial, because with techniques like angioplasty or bypass surgery, we can re-supply the tissue with nourishing blood flow.

“MRI can take the guesswork out of diagnosing heart problems -- we can see exactly what disease processes are going on,” Kim continued. “The MRI is not just providing better pictures of the heart -- which it does -- but it also provides new and better forms of information, such as the metabolism of heart muscle cells.”

For Pressley, the cardiac MRI was able to provide her physicians with the detailed answer they needed for a specific clinical problem. As more research is conducted at the DCMRC, the Duke investigators believe that cardiac MRI will revolutionize their ability to diagnose heart problems.

“For the future, we foresee a ‘one-stop shop’ where any question about the heart and its vessels can be answered definitively using this technology,” Kim said. “Unlike the other imaging technologies, cardiac MRI can be used to answer many different issues we face daily in treating our patients.”

The DCMRC currently operates the $2.6 million, four-ton scanner in its outpatient clinic. A second scanner will be installed later this year in the inpatient area of Duke Hospital to better serve patients who are hospitalized.

Richard Merritt | EurekAlert!
Further information:
http://dcmrc.mc.duke.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>