Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle-free blood and tissue measurements

02.10.2002


Dr. Babs Soller is developing a sensor system that will measure blood and tissue chemistry with no need for blood draws or incisions.
© National Space Biomedical Research Institute


Whether 240 miles above in the International Space Station or firmly grounded on Earth, medical testing without needles wins everyone’s vote.

Refinements under way to current near infrared (NIR) spectroscopic techniques will expand the range of non-invasive blood and tissue chemistry measurements. These changes also will provide accurate readings unaffected by skin color or body fat.

“Once complete, this device will allow chemical analysis and diagnosis without removing samples from the patient. It will be useful for monitoring surgery patients, assessing severity of traumatic injury, and evaluating injuries in space,” said Dr. Babs Soller, researcher on the National Space Biomedical Research Institute’s smart medical systems team.



Patients may now encounter NIR spectroscopy at the doctor’s office. The pulse oximeter, used for measuring oxygen saturation, employs a small clip placed on the finger or ear to measure the amount of oxygen carried by the blood, along with pulse rate.

“Light in the near infrared region has slightly longer wavelengths than red light. It is important for medicine because those wavelengths, for the most part, actually pass through skin and to some extent bone, allowing you to get chemical information about tissues and blood,” said Soller, a research associate professor of surgery at the University of Massachusetts Medical School.

To refine the technology for more varied measurements, Soller and colleagues are gathering data from patients. Study participants include cancer, cardiac surgery and trauma patients.

“We’re measuring hematocrit, tissue pH and tissue oxygenation using our device and standard techniques,” she said. “These data will give us the information needed to derive equations to calibrate the new NIR instrument.”

The blood and tissue measurements will provide key information, such as whether a patient is anemic and whether there are adequate levels of oxygen and blood flow to muscle tissue cells.

To make the device accurate regardless of skin color or body-fat content, Soller’s group is gathering data from 100 subjects representing five ethnic groups – African-American, Asian, Caucasian, Hispanic and Mediterranean.

“NIR light is absorbed by pigment in darker skin, so we are collecting data and developing equations that remove the influence of skin color and fat content on measurements,” Soller said. “Our technique will take this human variability into account. Once we adjust for these variables, we can take measurements on the arm or leg or even sew sensors into clothes.”

The final step will be to develop clinical guidelines for the measurements, so that physicians know the significance of the readings.

“Tissue pH and oxygenation are new medical parameters, so we have to determine specific values that, based on the readings, allow us to identify when a person is in shock or in need of treatment. We also see this device as a means to assess the adequacy of the treatment employed,” Soller said.

Since the technology is being designed to meet the lightweight, low-power and portable requirements of the space program, it will also be useful in ambulances, helicopters and emergency rooms.

“The beauty of the non-invasive technique is that it allows physicians to take measurements continuously, once a second if you want,” she said. “We think these measurements might help prevent serious complications from traumatic injuries by providing early indications of low oxygen availability.”

Soller feels the device will be particularly useful for treating patients with shock caused by excessive bleeding or heart attack, patients with internal bleeding, and pediatric patients, where it can be difficult to take multiple blood samples.

The technology also has potential use in exercise and endurance training.

“Tissue pH can measure how hard a person’s muscles are working. The device could be used to determine when the muscles are exhausted, so you could use it to develop a personal training program,” she said.

The prototype device currently uses two optical fibers, one shining the light into the patient and the other carrying the reflected light back to a device that analyzes the data. However, it still needs to be smaller for space use.

“We’re actively looking for a commercial partner to build a miniature version of the device,” she said.

National Space Biomedical Research Institute
One Baylor Plaza, NA-425, Houston, TX 77030
713-798-7412 (phone), 713-798-7413 (fax)
For more information contact info@www.nsbri.org



The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.

Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/20021001.html

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>