Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Needle-free blood and tissue measurements

02.10.2002


Dr. Babs Soller is developing a sensor system that will measure blood and tissue chemistry with no need for blood draws or incisions.
© National Space Biomedical Research Institute


Whether 240 miles above in the International Space Station or firmly grounded on Earth, medical testing without needles wins everyone’s vote.

Refinements under way to current near infrared (NIR) spectroscopic techniques will expand the range of non-invasive blood and tissue chemistry measurements. These changes also will provide accurate readings unaffected by skin color or body fat.

“Once complete, this device will allow chemical analysis and diagnosis without removing samples from the patient. It will be useful for monitoring surgery patients, assessing severity of traumatic injury, and evaluating injuries in space,” said Dr. Babs Soller, researcher on the National Space Biomedical Research Institute’s smart medical systems team.



Patients may now encounter NIR spectroscopy at the doctor’s office. The pulse oximeter, used for measuring oxygen saturation, employs a small clip placed on the finger or ear to measure the amount of oxygen carried by the blood, along with pulse rate.

“Light in the near infrared region has slightly longer wavelengths than red light. It is important for medicine because those wavelengths, for the most part, actually pass through skin and to some extent bone, allowing you to get chemical information about tissues and blood,” said Soller, a research associate professor of surgery at the University of Massachusetts Medical School.

To refine the technology for more varied measurements, Soller and colleagues are gathering data from patients. Study participants include cancer, cardiac surgery and trauma patients.

“We’re measuring hematocrit, tissue pH and tissue oxygenation using our device and standard techniques,” she said. “These data will give us the information needed to derive equations to calibrate the new NIR instrument.”

The blood and tissue measurements will provide key information, such as whether a patient is anemic and whether there are adequate levels of oxygen and blood flow to muscle tissue cells.

To make the device accurate regardless of skin color or body-fat content, Soller’s group is gathering data from 100 subjects representing five ethnic groups – African-American, Asian, Caucasian, Hispanic and Mediterranean.

“NIR light is absorbed by pigment in darker skin, so we are collecting data and developing equations that remove the influence of skin color and fat content on measurements,” Soller said. “Our technique will take this human variability into account. Once we adjust for these variables, we can take measurements on the arm or leg or even sew sensors into clothes.”

The final step will be to develop clinical guidelines for the measurements, so that physicians know the significance of the readings.

“Tissue pH and oxygenation are new medical parameters, so we have to determine specific values that, based on the readings, allow us to identify when a person is in shock or in need of treatment. We also see this device as a means to assess the adequacy of the treatment employed,” Soller said.

Since the technology is being designed to meet the lightweight, low-power and portable requirements of the space program, it will also be useful in ambulances, helicopters and emergency rooms.

“The beauty of the non-invasive technique is that it allows physicians to take measurements continuously, once a second if you want,” she said. “We think these measurements might help prevent serious complications from traumatic injuries by providing early indications of low oxygen availability.”

Soller feels the device will be particularly useful for treating patients with shock caused by excessive bleeding or heart attack, patients with internal bleeding, and pediatric patients, where it can be difficult to take multiple blood samples.

The technology also has potential use in exercise and endurance training.

“Tissue pH can measure how hard a person’s muscles are working. The device could be used to determine when the muscles are exhausted, so you could use it to develop a personal training program,” she said.

The prototype device currently uses two optical fibers, one shining the light into the patient and the other carrying the reflected light back to a device that analyzes the data. However, it still needs to be smaller for space use.

“We’re actively looking for a commercial partner to build a miniature version of the device,” she said.

National Space Biomedical Research Institute
One Baylor Plaza, NA-425, Houston, TX 77030
713-798-7412 (phone), 713-798-7413 (fax)
For more information contact info@www.nsbri.org



The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.

Kathy Major | EurekAlert!
Further information:
http://www.nsbri.org/NewsPublicOut/20021001.html

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>