Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Needle-free blood and tissue measurements


Dr. Babs Soller is developing a sensor system that will measure blood and tissue chemistry with no need for blood draws or incisions.
© National Space Biomedical Research Institute

Whether 240 miles above in the International Space Station or firmly grounded on Earth, medical testing without needles wins everyone’s vote.

Refinements under way to current near infrared (NIR) spectroscopic techniques will expand the range of non-invasive blood and tissue chemistry measurements. These changes also will provide accurate readings unaffected by skin color or body fat.

“Once complete, this device will allow chemical analysis and diagnosis without removing samples from the patient. It will be useful for monitoring surgery patients, assessing severity of traumatic injury, and evaluating injuries in space,” said Dr. Babs Soller, researcher on the National Space Biomedical Research Institute’s smart medical systems team.

Patients may now encounter NIR spectroscopy at the doctor’s office. The pulse oximeter, used for measuring oxygen saturation, employs a small clip placed on the finger or ear to measure the amount of oxygen carried by the blood, along with pulse rate.

“Light in the near infrared region has slightly longer wavelengths than red light. It is important for medicine because those wavelengths, for the most part, actually pass through skin and to some extent bone, allowing you to get chemical information about tissues and blood,” said Soller, a research associate professor of surgery at the University of Massachusetts Medical School.

To refine the technology for more varied measurements, Soller and colleagues are gathering data from patients. Study participants include cancer, cardiac surgery and trauma patients.

“We’re measuring hematocrit, tissue pH and tissue oxygenation using our device and standard techniques,” she said. “These data will give us the information needed to derive equations to calibrate the new NIR instrument.”

The blood and tissue measurements will provide key information, such as whether a patient is anemic and whether there are adequate levels of oxygen and blood flow to muscle tissue cells.

To make the device accurate regardless of skin color or body-fat content, Soller’s group is gathering data from 100 subjects representing five ethnic groups – African-American, Asian, Caucasian, Hispanic and Mediterranean.

“NIR light is absorbed by pigment in darker skin, so we are collecting data and developing equations that remove the influence of skin color and fat content on measurements,” Soller said. “Our technique will take this human variability into account. Once we adjust for these variables, we can take measurements on the arm or leg or even sew sensors into clothes.”

The final step will be to develop clinical guidelines for the measurements, so that physicians know the significance of the readings.

“Tissue pH and oxygenation are new medical parameters, so we have to determine specific values that, based on the readings, allow us to identify when a person is in shock or in need of treatment. We also see this device as a means to assess the adequacy of the treatment employed,” Soller said.

Since the technology is being designed to meet the lightweight, low-power and portable requirements of the space program, it will also be useful in ambulances, helicopters and emergency rooms.

“The beauty of the non-invasive technique is that it allows physicians to take measurements continuously, once a second if you want,” she said. “We think these measurements might help prevent serious complications from traumatic injuries by providing early indications of low oxygen availability.”

Soller feels the device will be particularly useful for treating patients with shock caused by excessive bleeding or heart attack, patients with internal bleeding, and pediatric patients, where it can be difficult to take multiple blood samples.

The technology also has potential use in exercise and endurance training.

“Tissue pH can measure how hard a person’s muscles are working. The device could be used to determine when the muscles are exhausted, so you could use it to develop a personal training program,” she said.

The prototype device currently uses two optical fibers, one shining the light into the patient and the other carrying the reflected light back to a device that analyzes the data. However, it still needs to be smaller for space use.

“We’re actively looking for a commercial partner to build a miniature version of the device,” she said.

National Space Biomedical Research Institute
One Baylor Plaza, NA-425, Houston, TX 77030
713-798-7412 (phone), 713-798-7413 (fax)
For more information contact

The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s 95 research and education projects take place at 75 institutions in 22 states involving 269 investigators.

Kathy Major | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>