Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neural stem cells improve motor function in brain injuries


Transplants in animal models could translate into therapy for humans

Neural stem cells, transplanted into injured brains, survive, proliferate, and improve brain function in laboratory models according to research based at the University of Pennsylvania School of Medicine. The findings, published in the October edition of the journal Neurosurgery, suggest that stem cells could provide the first clinical therapy to treat traumatic brain injuries. Traumatic brain injuries occur in two million Americans each year and are the leading cause of long-term neurological disability in children and young adults.

"Transplantation of neural stem cells in mice three days after brain injury promotes the improvement of specific components of motor function," said Tracy K. McIntosh, PhD, professor in the Department of Neurosurgery, Director of Penn’s Head Injury Center, and senior author of the study. "More importantly, these stem cells respond to signals and create replacement cells: both neurons, which transmit nerve signals, and glial cells, which serve many essential supportive roles in the nervous system."

If stem cells are blank slates, able to become any type of body cells, then neural stem cells (NSCs) are slates with the basics of neurology already written on them, waiting for signals in the nervous system to fill in the blanks. The NSCs used by McIntosh and his colleagues were cloned from mouse progenitor cells and grown in culture. The advantage of NSCs exists in their ability to easily incorporate themselves into their new environment in ways other types of transplants could not.

"If you put these cells into normal newborn mice, they would behave exactly like normal cells – they create different neural cell types and they don’t reproduce tumorigenically," said McIntosh. "In humans, the use of similar neural stem cells would avoid the ethical dilemmas posed by fetal stem cells and the limitations seen in cultures of cloned neurons."

In humans, traumatic brain injury is associated with disabilities affecting mobility, motor function and coordination. Following NSC transplantation in mice, the researchers used simple tests to determine motor skills. They found that mice with transplanted NSCs recovered much of their physical ability. The transplanted NSCs, however, seemed to have little effect in aiding recovery of lost cognitive abilities.

"The ultimate goal, of course, is to translate what we have learned into a therapy for humans," said McIntosh. Neural transplantation has been suggested to be potentially useful as a therapeutic intervention in several central nervous system diseases including Parkinson’s disease, Huntington’s disease, ischemic brain injury, and spinal cord injury. While McIntosh is impressed with the results of NSC transplants in mice, similar trials for humans are not expected in the near future.

Greg Lester | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>