Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells improve motor function in brain injuries

02.10.2002


Transplants in animal models could translate into therapy for humans

Neural stem cells, transplanted into injured brains, survive, proliferate, and improve brain function in laboratory models according to research based at the University of Pennsylvania School of Medicine. The findings, published in the October edition of the journal Neurosurgery, suggest that stem cells could provide the first clinical therapy to treat traumatic brain injuries. Traumatic brain injuries occur in two million Americans each year and are the leading cause of long-term neurological disability in children and young adults.

"Transplantation of neural stem cells in mice three days after brain injury promotes the improvement of specific components of motor function," said Tracy K. McIntosh, PhD, professor in the Department of Neurosurgery, Director of Penn’s Head Injury Center, and senior author of the study. "More importantly, these stem cells respond to signals and create replacement cells: both neurons, which transmit nerve signals, and glial cells, which serve many essential supportive roles in the nervous system."



If stem cells are blank slates, able to become any type of body cells, then neural stem cells (NSCs) are slates with the basics of neurology already written on them, waiting for signals in the nervous system to fill in the blanks. The NSCs used by McIntosh and his colleagues were cloned from mouse progenitor cells and grown in culture. The advantage of NSCs exists in their ability to easily incorporate themselves into their new environment in ways other types of transplants could not.

"If you put these cells into normal newborn mice, they would behave exactly like normal cells – they create different neural cell types and they don’t reproduce tumorigenically," said McIntosh. "In humans, the use of similar neural stem cells would avoid the ethical dilemmas posed by fetal stem cells and the limitations seen in cultures of cloned neurons."

In humans, traumatic brain injury is associated with disabilities affecting mobility, motor function and coordination. Following NSC transplantation in mice, the researchers used simple tests to determine motor skills. They found that mice with transplanted NSCs recovered much of their physical ability. The transplanted NSCs, however, seemed to have little effect in aiding recovery of lost cognitive abilities.

"The ultimate goal, of course, is to translate what we have learned into a therapy for humans," said McIntosh. Neural transplantation has been suggested to be potentially useful as a therapeutic intervention in several central nervous system diseases including Parkinson’s disease, Huntington’s disease, ischemic brain injury, and spinal cord injury. While McIntosh is impressed with the results of NSC transplants in mice, similar trials for humans are not expected in the near future.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>