Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blocking enzyme found to ease anxiety without causing sedation


Suggests new route to treat anxiety without sedating or addicting side effects

The trouble with most anti-anxiety drugs is that they tend to sedate, not just relax. A research team led by scientists at UCSF’s Ernest Gallo Clinic and Research Center has shown that de-activating a common enzyme in neurons reduces anxiety without inducing sedation. The study in mice suggests a new route to treat anxiety while avoiding sedating and possibly addicting effects.

The research, published in the October issue of The Journal of Clinical Investigation, also showed that blocking the enzyme reduced levels of stress hormones. The same issue of the journal includes a commentary on the research (Anxiolytic Drug Targets: Beyond the Usual Suspects) by Joshua A. Gordon of Columbia University’s Center for Neurobiology and Behavior.

Anti-anxiety drugs such as Valium often leave people sedated, less capable at mental tasks, and can become addicting, whereas drugs without these side effects -- such as some antidepressants -- may not reduce anxiety as well, said Robert Messing, MD, UCSF professor of neurology at the Gallo Research Center and senior author on the paper.

But in the new study, mice lacking the enzyme showed reduced anxiety while maintaining normal levels of alertness and learning abilities, the researchers reported.

The enzyme, known as protein kinase C epsilon (PKC epsilon), is present in many neurons in the brain, but its role is not well known. Its ability to affect anxiety but not sedation may stem from indirect, rather than direct action, the researchers found.

When the neurotransmitter GABA binds to proteins on the surface of many neurons, known as GABA-A receptors, the neurons become less active, which tends to reduce anxiety. Drugs such as Valium act by increasing the action of GABA at the GABA-A receptors. A group of brain molecules derived from progesterone, known as neurosteroids, also act to increase the action at the GABA-A receptor, and thereby reduce anxiety. But PKC epsilon appears to make the GABA-A receptor less sensitive to the neurosteroids, increasing anxiety. Experiments using brain membranes and studies of mouse behavior showed that knocking out PKC epsilon increases GABA-A receptor sensitivity to neurosteroids, and thereby decreases anxiety.

"PKC modulates the modulator," Messing said. Because it is an intermediary, it is a promising focus for drugs that could decouple the biochemical pathway that leads to anxiety from the pathway that leads to sedation, he said.

The researchers focused on physiological and behavioral effects of knocking out the PKC gene. Messing and his colleagues developed the strain of PKC knockout mice in 1998 and have been studying the neurological effects.

In tests that measure the tendency of mice to avoid heights and exposed environments, the research showed that PKC epsilon-knockout mice expressed less anxiety-like behavior than wild-type mice. The mice also had lower levels of the stress hormone corticosterone. When GABA-A receptor activity was chemically blocked, anxiety and stress hormone levels increased to normal.

Other studies by Messing and colleagues have shown that knocking out the PKC epsilon gene reduces pain related to inflammation and decreases consumption of alcohol in mice. Work by others indicates that knocking out PKC epsilon reduces fertility of female mice by weakening their immune function. But a drug designed to inhibit PKC epsilon might well avoid this side effect, since it would not knock out all enzyme function, Messing noted.

"Although we don’t yet know precisely how PKC epsilon normally affects GABA-A receptors, the research clearly shows its effect on anxiety-related behavior," Messing said. "A drug based on this finding may well treat anxiety without compromising alertness or cognitive abilities."

Wallace Ravven | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>