Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking enzyme found to ease anxiety without causing sedation

02.10.2002


Suggests new route to treat anxiety without sedating or addicting side effects



The trouble with most anti-anxiety drugs is that they tend to sedate, not just relax. A research team led by scientists at UCSF’s Ernest Gallo Clinic and Research Center has shown that de-activating a common enzyme in neurons reduces anxiety without inducing sedation. The study in mice suggests a new route to treat anxiety while avoiding sedating and possibly addicting effects.

The research, published in the October issue of The Journal of Clinical Investigation, also showed that blocking the enzyme reduced levels of stress hormones. The same issue of the journal includes a commentary on the research (Anxiolytic Drug Targets: Beyond the Usual Suspects) by Joshua A. Gordon of Columbia University’s Center for Neurobiology and Behavior.


Anti-anxiety drugs such as Valium often leave people sedated, less capable at mental tasks, and can become addicting, whereas drugs without these side effects -- such as some antidepressants -- may not reduce anxiety as well, said Robert Messing, MD, UCSF professor of neurology at the Gallo Research Center and senior author on the paper.

But in the new study, mice lacking the enzyme showed reduced anxiety while maintaining normal levels of alertness and learning abilities, the researchers reported.

The enzyme, known as protein kinase C epsilon (PKC epsilon), is present in many neurons in the brain, but its role is not well known. Its ability to affect anxiety but not sedation may stem from indirect, rather than direct action, the researchers found.

When the neurotransmitter GABA binds to proteins on the surface of many neurons, known as GABA-A receptors, the neurons become less active, which tends to reduce anxiety. Drugs such as Valium act by increasing the action of GABA at the GABA-A receptors. A group of brain molecules derived from progesterone, known as neurosteroids, also act to increase the action at the GABA-A receptor, and thereby reduce anxiety. But PKC epsilon appears to make the GABA-A receptor less sensitive to the neurosteroids, increasing anxiety. Experiments using brain membranes and studies of mouse behavior showed that knocking out PKC epsilon increases GABA-A receptor sensitivity to neurosteroids, and thereby decreases anxiety.

"PKC modulates the modulator," Messing said. Because it is an intermediary, it is a promising focus for drugs that could decouple the biochemical pathway that leads to anxiety from the pathway that leads to sedation, he said.

The researchers focused on physiological and behavioral effects of knocking out the PKC gene. Messing and his colleagues developed the strain of PKC knockout mice in 1998 and have been studying the neurological effects.

In tests that measure the tendency of mice to avoid heights and exposed environments, the research showed that PKC epsilon-knockout mice expressed less anxiety-like behavior than wild-type mice. The mice also had lower levels of the stress hormone corticosterone. When GABA-A receptor activity was chemically blocked, anxiety and stress hormone levels increased to normal.

Other studies by Messing and colleagues have shown that knocking out the PKC epsilon gene reduces pain related to inflammation and decreases consumption of alcohol in mice. Work by others indicates that knocking out PKC epsilon reduces fertility of female mice by weakening their immune function. But a drug designed to inhibit PKC epsilon might well avoid this side effect, since it would not knock out all enzyme function, Messing noted.

"Although we don’t yet know precisely how PKC epsilon normally affects GABA-A receptors, the research clearly shows its effect on anxiety-related behavior," Messing said. "A drug based on this finding may well treat anxiety without compromising alertness or cognitive abilities."

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>