Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking enzyme found to ease anxiety without causing sedation

02.10.2002


Suggests new route to treat anxiety without sedating or addicting side effects



The trouble with most anti-anxiety drugs is that they tend to sedate, not just relax. A research team led by scientists at UCSF’s Ernest Gallo Clinic and Research Center has shown that de-activating a common enzyme in neurons reduces anxiety without inducing sedation. The study in mice suggests a new route to treat anxiety while avoiding sedating and possibly addicting effects.

The research, published in the October issue of The Journal of Clinical Investigation, also showed that blocking the enzyme reduced levels of stress hormones. The same issue of the journal includes a commentary on the research (Anxiolytic Drug Targets: Beyond the Usual Suspects) by Joshua A. Gordon of Columbia University’s Center for Neurobiology and Behavior.


Anti-anxiety drugs such as Valium often leave people sedated, less capable at mental tasks, and can become addicting, whereas drugs without these side effects -- such as some antidepressants -- may not reduce anxiety as well, said Robert Messing, MD, UCSF professor of neurology at the Gallo Research Center and senior author on the paper.

But in the new study, mice lacking the enzyme showed reduced anxiety while maintaining normal levels of alertness and learning abilities, the researchers reported.

The enzyme, known as protein kinase C epsilon (PKC epsilon), is present in many neurons in the brain, but its role is not well known. Its ability to affect anxiety but not sedation may stem from indirect, rather than direct action, the researchers found.

When the neurotransmitter GABA binds to proteins on the surface of many neurons, known as GABA-A receptors, the neurons become less active, which tends to reduce anxiety. Drugs such as Valium act by increasing the action of GABA at the GABA-A receptors. A group of brain molecules derived from progesterone, known as neurosteroids, also act to increase the action at the GABA-A receptor, and thereby reduce anxiety. But PKC epsilon appears to make the GABA-A receptor less sensitive to the neurosteroids, increasing anxiety. Experiments using brain membranes and studies of mouse behavior showed that knocking out PKC epsilon increases GABA-A receptor sensitivity to neurosteroids, and thereby decreases anxiety.

"PKC modulates the modulator," Messing said. Because it is an intermediary, it is a promising focus for drugs that could decouple the biochemical pathway that leads to anxiety from the pathway that leads to sedation, he said.

The researchers focused on physiological and behavioral effects of knocking out the PKC gene. Messing and his colleagues developed the strain of PKC knockout mice in 1998 and have been studying the neurological effects.

In tests that measure the tendency of mice to avoid heights and exposed environments, the research showed that PKC epsilon-knockout mice expressed less anxiety-like behavior than wild-type mice. The mice also had lower levels of the stress hormone corticosterone. When GABA-A receptor activity was chemically blocked, anxiety and stress hormone levels increased to normal.

Other studies by Messing and colleagues have shown that knocking out the PKC epsilon gene reduces pain related to inflammation and decreases consumption of alcohol in mice. Work by others indicates that knocking out PKC epsilon reduces fertility of female mice by weakening their immune function. But a drug designed to inhibit PKC epsilon might well avoid this side effect, since it would not knock out all enzyme function, Messing noted.

"Although we don’t yet know precisely how PKC epsilon normally affects GABA-A receptors, the research clearly shows its effect on anxiety-related behavior," Messing said. "A drug based on this finding may well treat anxiety without compromising alertness or cognitive abilities."

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>