Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings aid understanding of neurodegenerative diseases

30.09.2002


Northwestern University scientists have made a key molecular discovery that has implications for a wide range of diseases characterized by the loss of nerve function, including Huntington’s, Parkinson’s, Alzheimer’s and Lou Gehrig’s diseases, cystic fibrosis and Creutzfeldt-Jakob disease, the human form of mad cow disease.



The findings, which will be published in the Oct. 1 issue of Nature Cell Biology, could lead to an understanding of how to prevent these diseases and to the development of effective drugs.

All human neurodegenerative diseases have two things in common. First, misfolded and damaged proteins clump together to form toxic species that aggregate, destroy cell function and cause disease. Second, studies have shown that special protective proteins, called molecular chaperones, can suppress these toxic effects. This question remained: How do the chaperones and aggregates interact with each other?


A research team led by Richard I. Morimoto, John Evans Professor of Biology, now can answer that question. The researchers have become the first to view, in living cells and in real time, the interactions between the beneficial molecular chaperone Hsp70 and the damaging protein aggregate, shedding light on how the chaperone works to minimize aggregate growth.

"We now understand how the chaperone influences the aggregate’s toxic effect on the cell," said Morimoto. "We observed that the chaperone is binding to and then coming off the aggregate all the time. This dynamic relationship is unusual because the aggregate, the result of a genetic mutation, brings healthy and otherwise normal proteins to aggregate irreversibly with them. But this clearly is not the case with the molecular chaperone."

Instead, the molecular chaperone is allowed, for reasons not fully understood, to do its work preventing healthy proteins essential to cell function from being bound to the aggregate, a biochemical "black hole." The chaperone is continually sampling the aggregate to see what’s there and to release any healthy proteins from the aggregate’s clutches. This could suppress the aggregate’s growth, prolonging the life of the cell and delaying the onset of disease.

"These observations provide the first visual study of this cell survival activity," said Morimoto, whose team studied the chaperone Hsp70 (a heat shock protein) and polyglutamine aggregates, the type of protein aggregate responsible for Huntington’s disease. "The molecular chaperones are not like other proteins."

In order to visualize the behavior of chaperones and aggregates in an animal, the researchers use human tissue culture cells and C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known.

Although the Northwestern researchers are studying Huntington’s disease, these experimental models can be used to study other neurodegenerative diseases because of the common molecular components.

Proteins, made up of different combinations of amino acids, are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this delicate process, the protein receives its folding instructions from its amino acid sequence and is assisted by a class of proteins known as heat shock proteins or molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation.

In Huntington’s disease, for example, a mutated gene directs production of a protein with an increasing number of consecutive residues of the amino acid glutamine. When the number of residues expands past 40, the protein exhibits unusual biochemical properties, causing the protein to misfold. This results in a loss of function and protein aggregation -- in other words, disease.

"How do we use this new information about molecular chaperones to our advantage, to protect individuals from the molecular damage of disease?" said Morimoto. "That is our next challenge."

Related to this research, Morimoto reported in the August issue of Proceedings of the National Academy of Sciences that the appearance of aggregates and polyglutamine protein toxicity associated with Huntington’s disease in C. elegans can be suppressed by a genetic pathway that controls aging.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>