Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings aid understanding of neurodegenerative diseases

30.09.2002


Northwestern University scientists have made a key molecular discovery that has implications for a wide range of diseases characterized by the loss of nerve function, including Huntington’s, Parkinson’s, Alzheimer’s and Lou Gehrig’s diseases, cystic fibrosis and Creutzfeldt-Jakob disease, the human form of mad cow disease.



The findings, which will be published in the Oct. 1 issue of Nature Cell Biology, could lead to an understanding of how to prevent these diseases and to the development of effective drugs.

All human neurodegenerative diseases have two things in common. First, misfolded and damaged proteins clump together to form toxic species that aggregate, destroy cell function and cause disease. Second, studies have shown that special protective proteins, called molecular chaperones, can suppress these toxic effects. This question remained: How do the chaperones and aggregates interact with each other?


A research team led by Richard I. Morimoto, John Evans Professor of Biology, now can answer that question. The researchers have become the first to view, in living cells and in real time, the interactions between the beneficial molecular chaperone Hsp70 and the damaging protein aggregate, shedding light on how the chaperone works to minimize aggregate growth.

"We now understand how the chaperone influences the aggregate’s toxic effect on the cell," said Morimoto. "We observed that the chaperone is binding to and then coming off the aggregate all the time. This dynamic relationship is unusual because the aggregate, the result of a genetic mutation, brings healthy and otherwise normal proteins to aggregate irreversibly with them. But this clearly is not the case with the molecular chaperone."

Instead, the molecular chaperone is allowed, for reasons not fully understood, to do its work preventing healthy proteins essential to cell function from being bound to the aggregate, a biochemical "black hole." The chaperone is continually sampling the aggregate to see what’s there and to release any healthy proteins from the aggregate’s clutches. This could suppress the aggregate’s growth, prolonging the life of the cell and delaying the onset of disease.

"These observations provide the first visual study of this cell survival activity," said Morimoto, whose team studied the chaperone Hsp70 (a heat shock protein) and polyglutamine aggregates, the type of protein aggregate responsible for Huntington’s disease. "The molecular chaperones are not like other proteins."

In order to visualize the behavior of chaperones and aggregates in an animal, the researchers use human tissue culture cells and C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known.

Although the Northwestern researchers are studying Huntington’s disease, these experimental models can be used to study other neurodegenerative diseases because of the common molecular components.

Proteins, made up of different combinations of amino acids, are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this delicate process, the protein receives its folding instructions from its amino acid sequence and is assisted by a class of proteins known as heat shock proteins or molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation.

In Huntington’s disease, for example, a mutated gene directs production of a protein with an increasing number of consecutive residues of the amino acid glutamine. When the number of residues expands past 40, the protein exhibits unusual biochemical properties, causing the protein to misfold. This results in a loss of function and protein aggregation -- in other words, disease.

"How do we use this new information about molecular chaperones to our advantage, to protect individuals from the molecular damage of disease?" said Morimoto. "That is our next challenge."

Related to this research, Morimoto reported in the August issue of Proceedings of the National Academy of Sciences that the appearance of aggregates and polyglutamine protein toxicity associated with Huntington’s disease in C. elegans can be suppressed by a genetic pathway that controls aging.

Megan Fellman | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>