Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings aid understanding of neurodegenerative diseases


Northwestern University scientists have made a key molecular discovery that has implications for a wide range of diseases characterized by the loss of nerve function, including Huntington’s, Parkinson’s, Alzheimer’s and Lou Gehrig’s diseases, cystic fibrosis and Creutzfeldt-Jakob disease, the human form of mad cow disease.

The findings, which will be published in the Oct. 1 issue of Nature Cell Biology, could lead to an understanding of how to prevent these diseases and to the development of effective drugs.

All human neurodegenerative diseases have two things in common. First, misfolded and damaged proteins clump together to form toxic species that aggregate, destroy cell function and cause disease. Second, studies have shown that special protective proteins, called molecular chaperones, can suppress these toxic effects. This question remained: How do the chaperones and aggregates interact with each other?

A research team led by Richard I. Morimoto, John Evans Professor of Biology, now can answer that question. The researchers have become the first to view, in living cells and in real time, the interactions between the beneficial molecular chaperone Hsp70 and the damaging protein aggregate, shedding light on how the chaperone works to minimize aggregate growth.

"We now understand how the chaperone influences the aggregate’s toxic effect on the cell," said Morimoto. "We observed that the chaperone is binding to and then coming off the aggregate all the time. This dynamic relationship is unusual because the aggregate, the result of a genetic mutation, brings healthy and otherwise normal proteins to aggregate irreversibly with them. But this clearly is not the case with the molecular chaperone."

Instead, the molecular chaperone is allowed, for reasons not fully understood, to do its work preventing healthy proteins essential to cell function from being bound to the aggregate, a biochemical "black hole." The chaperone is continually sampling the aggregate to see what’s there and to release any healthy proteins from the aggregate’s clutches. This could suppress the aggregate’s growth, prolonging the life of the cell and delaying the onset of disease.

"These observations provide the first visual study of this cell survival activity," said Morimoto, whose team studied the chaperone Hsp70 (a heat shock protein) and polyglutamine aggregates, the type of protein aggregate responsible for Huntington’s disease. "The molecular chaperones are not like other proteins."

In order to visualize the behavior of chaperones and aggregates in an animal, the researchers use human tissue culture cells and C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known.

Although the Northwestern researchers are studying Huntington’s disease, these experimental models can be used to study other neurodegenerative diseases because of the common molecular components.

Proteins, made up of different combinations of amino acids, are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this delicate process, the protein receives its folding instructions from its amino acid sequence and is assisted by a class of proteins known as heat shock proteins or molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation.

In Huntington’s disease, for example, a mutated gene directs production of a protein with an increasing number of consecutive residues of the amino acid glutamine. When the number of residues expands past 40, the protein exhibits unusual biochemical properties, causing the protein to misfold. This results in a loss of function and protein aggregation -- in other words, disease.

"How do we use this new information about molecular chaperones to our advantage, to protect individuals from the molecular damage of disease?" said Morimoto. "That is our next challenge."

Related to this research, Morimoto reported in the August issue of Proceedings of the National Academy of Sciences that the appearance of aggregates and polyglutamine protein toxicity associated with Huntington’s disease in C. elegans can be suppressed by a genetic pathway that controls aging.

Megan Fellman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>