Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chili peppers and inflammation: Researchers unravel mechanism of pain sensitivity

26.09.2002


Scientists at Massachusetts General Hospital (MGH) have discovered a common component to the burning sensation produced by chili peppers and the pain associated with arthritis. The finding, published in the September 26 issue of Neuron, could help scientists devise new strategies to block the pain hypersensitivity associated with inflammation.



"The receptor activated by chili peppers in the mouth and other tissues also increases in the terminals of sensory neurons in the skin after inflammation, and this contributes to pain hypersensitivity," says Clifford Woolf, MD, PhD, director of the Neural Plasticity Research Group in the Department of Anesthesia and Critical Care at MGH. A receptor is a protein that transports a chemical signal into a cell.

Woolf and lead author Ru-Rong Ji, PhD, also of the MGH Neural Plasticity Research Group, found that the increased production of the receptor following inflammation is mediated by a signal molecule called p38, located within sensory neurons. The chili pepper receptor, which is technically called TRPV1, responds to capsaicin, the chemical that is responsible for the "hot" in peppers. It also responds to actual heat and to low pH, a condition that occurs with inflammation.


"With these findings, we’re starting to understand why patients with arthritis or other inflammatory conditions are likely to have increased pain and sensitivity to heat," says Woolf. He and his research team were surprised to find that the activation of p38 can cause a twenty-fold increase in the amount of TRPV1 protein in the skin but not in the activity of the gene coding for TRPV1.

"This means that the chili pepper receptor is not being regulated by the gene being switched on but by more protein being produced, an unexpected form of regulation," says Ji. He also notes that their findings will open up new options for pain management. "We could use an inhibitor to p38 to block the increase in TRPV1, therefore blocking pain in patients who suffer from many diseases and conditions that involve inflammation."

Following inflammation, the activation of p38 is very precise. The scientists found that it is caused by a specific growth factor signal acting on a particular subset of pain sensory neurons. There are a variety of pain sensations that create different changes within neurons, and all of the signals that are generated have not yet been identified. Each new discovery, like the current finding by the MGH researchers, sheds light on these complex pathways and brings new treatment strategies closer.

Susan McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>