Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right side of brain learns language skills after stroke

26.09.2002


When a stroke affects the language areas in the left side of the brain, the right side takes over and learns how to perform language tasks, according to research at Washington University School of Medicine in St. Louis. The study found that patients’ right side of the brain is more active than normal during a verbal language task, and that the right side’s activity decreases with practice, similar to what happens on the left side of the brain in healthy individuals.



"This is the first demonstration that learning and, by extension, speech therapy change the way compensatory pathways in the brain work," says Maurizio Corbetta, M.D., head of stroke and brain injury rehabilitation. "This study supports the hypothesis that brain pathways in the right hemisphere are directly involved in the recovery of language after stroke."

The study appears in the Sept. 26 issue of the journal Neuron. Corbetta, the study’s senior author, also is associate professor of neurology, of radiology and of anatomy and neurobiology. The first author is Valeria Blasi, M.D., a former post-doctoral fellow in neurology at the School of Medicine, who now is at the San Raffaele Scientific Institute in Milan, Italy.


Each year, about 750,000 Americans suffer a loss of blood flow to the brain, a condition known as an ischemic stroke. Since the left side of the brain houses most of the areas responsible for speech and language, a left-sided stroke often causes language problems, a condition known as aphasia. About 1 million people in the United States have aphasia, resulting in an estimated $1.5 billion of lost productivity and other costs each year.

Remarkably, many of those who initially lose language abilities after a stroke significantly recover these abilities within six to 12 months. Several studies suggest that language recovery occurs because the right hemisphere of the brain compensates for the loss of the left hemisphere. For example, language abilities recovered after a stroke to the left hemisphere are lost again if the individual later has a stroke to the right hemisphere.

To test whether there is a direct link between recovered language abilities and activity in the right hemisphere, Corbetta’s team compared performance scores and brain images from 14 healthy individuals with those of eight stroke patients. The patients all had experienced a stroke at least six months before participating in the study and still had damage near a brain region called Broca’s area, located towards the front of the brain and thought to be involved in speech.

The team first measured the two groups’ performance while they learned a word-stem completion task. Participants saw three letters at a time and were asked to say a word that began with those three letters. For example, if they saw the letters "COU" they might say "cougar." Each word stem appeared several times during the experiment.

The patient group was slower and less accurate, but both groups learned and improved at the same rate. For example, each group was about 400 milliseconds faster on the seventh block of trials than on the first. Participants in each group also repeated the same answer for a given word stem about 20 percent of the time, a sign that they remembered the word and learned the answer.

The participants then performed the same task while the researchers took brain images using functional magnetic resonance imaging (fMRI). These images identify which brain regions are active during a given task.

The brain normally becomes less active as subjects practice. Because the task becomes familiar and easier, the brain does not have to work as hard. Brain activity decreases in areas that are important for performing the task. In this study, as healthy participants’ performance improved, language areas on the left side of the brain, including Broca’s area, became less active with practice. In addition, areas towards the back of the brain that are involved in vision became less active in both the left and right hemispheres.

Brain images from stroke patients revealed several differences. Language areas damaged by the stroke were not active during the language task. However, areas on the right side of the brain opposite the damaged areas on the left did become active during the task, and that activity decreased with practice. Visual areas on the right side also decreased with practice.

The team also noticed that patients with smaller lesions had slightly different patterns of brain activity. In addition to learning-related changes on the right side of the brain, the areas near the lesion on the left side also improved with practice. These patients also were better at learning the task and ultimately recovered more than the other stroke patients.

According to Corbetta, these results indicate that a stroke produces complex changes in the way both sides of the brain perform during language tasks. "The good news is that these new patterns of brain activity can change through practice, and that this correlates with improved performance," he says. "This information has direct implications for optimizing rehabilitation and pharmacological treatment after stroke."

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>