Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right side of brain learns language skills after stroke

26.09.2002


When a stroke affects the language areas in the left side of the brain, the right side takes over and learns how to perform language tasks, according to research at Washington University School of Medicine in St. Louis. The study found that patients’ right side of the brain is more active than normal during a verbal language task, and that the right side’s activity decreases with practice, similar to what happens on the left side of the brain in healthy individuals.



"This is the first demonstration that learning and, by extension, speech therapy change the way compensatory pathways in the brain work," says Maurizio Corbetta, M.D., head of stroke and brain injury rehabilitation. "This study supports the hypothesis that brain pathways in the right hemisphere are directly involved in the recovery of language after stroke."

The study appears in the Sept. 26 issue of the journal Neuron. Corbetta, the study’s senior author, also is associate professor of neurology, of radiology and of anatomy and neurobiology. The first author is Valeria Blasi, M.D., a former post-doctoral fellow in neurology at the School of Medicine, who now is at the San Raffaele Scientific Institute in Milan, Italy.


Each year, about 750,000 Americans suffer a loss of blood flow to the brain, a condition known as an ischemic stroke. Since the left side of the brain houses most of the areas responsible for speech and language, a left-sided stroke often causes language problems, a condition known as aphasia. About 1 million people in the United States have aphasia, resulting in an estimated $1.5 billion of lost productivity and other costs each year.

Remarkably, many of those who initially lose language abilities after a stroke significantly recover these abilities within six to 12 months. Several studies suggest that language recovery occurs because the right hemisphere of the brain compensates for the loss of the left hemisphere. For example, language abilities recovered after a stroke to the left hemisphere are lost again if the individual later has a stroke to the right hemisphere.

To test whether there is a direct link between recovered language abilities and activity in the right hemisphere, Corbetta’s team compared performance scores and brain images from 14 healthy individuals with those of eight stroke patients. The patients all had experienced a stroke at least six months before participating in the study and still had damage near a brain region called Broca’s area, located towards the front of the brain and thought to be involved in speech.

The team first measured the two groups’ performance while they learned a word-stem completion task. Participants saw three letters at a time and were asked to say a word that began with those three letters. For example, if they saw the letters "COU" they might say "cougar." Each word stem appeared several times during the experiment.

The patient group was slower and less accurate, but both groups learned and improved at the same rate. For example, each group was about 400 milliseconds faster on the seventh block of trials than on the first. Participants in each group also repeated the same answer for a given word stem about 20 percent of the time, a sign that they remembered the word and learned the answer.

The participants then performed the same task while the researchers took brain images using functional magnetic resonance imaging (fMRI). These images identify which brain regions are active during a given task.

The brain normally becomes less active as subjects practice. Because the task becomes familiar and easier, the brain does not have to work as hard. Brain activity decreases in areas that are important for performing the task. In this study, as healthy participants’ performance improved, language areas on the left side of the brain, including Broca’s area, became less active with practice. In addition, areas towards the back of the brain that are involved in vision became less active in both the left and right hemispheres.

Brain images from stroke patients revealed several differences. Language areas damaged by the stroke were not active during the language task. However, areas on the right side of the brain opposite the damaged areas on the left did become active during the task, and that activity decreased with practice. Visual areas on the right side also decreased with practice.

The team also noticed that patients with smaller lesions had slightly different patterns of brain activity. In addition to learning-related changes on the right side of the brain, the areas near the lesion on the left side also improved with practice. These patients also were better at learning the task and ultimately recovered more than the other stroke patients.

According to Corbetta, these results indicate that a stroke produces complex changes in the way both sides of the brain perform during language tasks. "The good news is that these new patterns of brain activity can change through practice, and that this correlates with improved performance," he says. "This information has direct implications for optimizing rehabilitation and pharmacological treatment after stroke."

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>