Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right side of brain learns language skills after stroke

26.09.2002


When a stroke affects the language areas in the left side of the brain, the right side takes over and learns how to perform language tasks, according to research at Washington University School of Medicine in St. Louis. The study found that patients’ right side of the brain is more active than normal during a verbal language task, and that the right side’s activity decreases with practice, similar to what happens on the left side of the brain in healthy individuals.



"This is the first demonstration that learning and, by extension, speech therapy change the way compensatory pathways in the brain work," says Maurizio Corbetta, M.D., head of stroke and brain injury rehabilitation. "This study supports the hypothesis that brain pathways in the right hemisphere are directly involved in the recovery of language after stroke."

The study appears in the Sept. 26 issue of the journal Neuron. Corbetta, the study’s senior author, also is associate professor of neurology, of radiology and of anatomy and neurobiology. The first author is Valeria Blasi, M.D., a former post-doctoral fellow in neurology at the School of Medicine, who now is at the San Raffaele Scientific Institute in Milan, Italy.


Each year, about 750,000 Americans suffer a loss of blood flow to the brain, a condition known as an ischemic stroke. Since the left side of the brain houses most of the areas responsible for speech and language, a left-sided stroke often causes language problems, a condition known as aphasia. About 1 million people in the United States have aphasia, resulting in an estimated $1.5 billion of lost productivity and other costs each year.

Remarkably, many of those who initially lose language abilities after a stroke significantly recover these abilities within six to 12 months. Several studies suggest that language recovery occurs because the right hemisphere of the brain compensates for the loss of the left hemisphere. For example, language abilities recovered after a stroke to the left hemisphere are lost again if the individual later has a stroke to the right hemisphere.

To test whether there is a direct link between recovered language abilities and activity in the right hemisphere, Corbetta’s team compared performance scores and brain images from 14 healthy individuals with those of eight stroke patients. The patients all had experienced a stroke at least six months before participating in the study and still had damage near a brain region called Broca’s area, located towards the front of the brain and thought to be involved in speech.

The team first measured the two groups’ performance while they learned a word-stem completion task. Participants saw three letters at a time and were asked to say a word that began with those three letters. For example, if they saw the letters "COU" they might say "cougar." Each word stem appeared several times during the experiment.

The patient group was slower and less accurate, but both groups learned and improved at the same rate. For example, each group was about 400 milliseconds faster on the seventh block of trials than on the first. Participants in each group also repeated the same answer for a given word stem about 20 percent of the time, a sign that they remembered the word and learned the answer.

The participants then performed the same task while the researchers took brain images using functional magnetic resonance imaging (fMRI). These images identify which brain regions are active during a given task.

The brain normally becomes less active as subjects practice. Because the task becomes familiar and easier, the brain does not have to work as hard. Brain activity decreases in areas that are important for performing the task. In this study, as healthy participants’ performance improved, language areas on the left side of the brain, including Broca’s area, became less active with practice. In addition, areas towards the back of the brain that are involved in vision became less active in both the left and right hemispheres.

Brain images from stroke patients revealed several differences. Language areas damaged by the stroke were not active during the language task. However, areas on the right side of the brain opposite the damaged areas on the left did become active during the task, and that activity decreased with practice. Visual areas on the right side also decreased with practice.

The team also noticed that patients with smaller lesions had slightly different patterns of brain activity. In addition to learning-related changes on the right side of the brain, the areas near the lesion on the left side also improved with practice. These patients also were better at learning the task and ultimately recovered more than the other stroke patients.

According to Corbetta, these results indicate that a stroke produces complex changes in the way both sides of the brain perform during language tasks. "The good news is that these new patterns of brain activity can change through practice, and that this correlates with improved performance," he says. "This information has direct implications for optimizing rehabilitation and pharmacological treatment after stroke."

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>