Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find clue to understanding tolerance to drugs of abuse

24.09.2002


Researchers at UT Southwestern Medical Center at Dallas and their colleagues have uncovered new information that will help brain researchers better understand a person’s tolerance to drugs of abuse and open new avenues of investigation into the relationship of addictive-drug usage and the biological causes of mood disorders.



Dr. Michel Barrot, assistant professor of psychiatry at UT Southwestern and lead author of the paper, said researchers used genetically altered mice to show that pain – both physiological and psychological – as well as pleasure can activate changes in the nucleus accumbens, the forebrain structure critical for reward and motivation processes. The findings appeared in a recent issue of Proceedings of the National Academy of Sciences.

Senior author Dr. Eric Nestler, chairman of psychiatry at UT Southwestern, had previously established that drugs of abuse activate CREB, a specific binding protein known for playing a role in the plasticity and adaptation of nerves in the nucleus accumbens. This action between a drug and a binding site is involved with the learning processes and can affect the interaction between subject and environment.


Barrot worked with Nestler on the earlier research that laid the scientific basis for the study in Proceedings.

Researchers reported that they used viral-mediated gene transfer to deliver and overexpress CREB locally, thus mimicking the CREB hyperactivity seen after the delivery of drugs of abuse or exposure to stress. The mice were then tested for their sensitivity to rewards, such as morphine or sucrose, as well as for their sensitivity to anxiety-causing negative situations or painful stimuli.

"In the paper we show that inducing local CREB hyperactivity decreases the emotional response of an animal in different ways, including those that are rewarding, aversive, anxiety-provoking or hurtful," Barrot said. "On the other hand, a decrease in activity in the CREB site causes the opposite reaction. These data suggest the CREB activity in the shell of the nucleus accumbens controls the behavioral responses to emotional stimuli."

Barrot said the manipulation of the behavioral responses to the emotional stimuli "appears to be independent of either positive or negative intensity of the stimulus."

Nestler said, "This work supports the view that brain-reward regions important for addiction may also be involved in symptoms of depression and implicates the critical role of CREB in controlling the activity of these brain regions."

Ann Harrell | EurekAlert!
Further information:
http://irweb.swmed.edu/newspub/newsdetl.asp?story_id=469

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>