Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Commission carries out research towards preventing the occurrence of osteoporosis

24.09.2002


Osteoporosis, which means porous bones, is a disease that thins and weakens bones, making them fragile and more likely to break. The vast majority of individuals affected by osteoporosis are women. Although the disease can strike at any age, the greatest risk for fractures from osteoporosis occurs after menopause. This is because women’s bodies produce less oestrogen after menopause, and oestrogen plays an important role in helping to prevent bone loss. As the EU population continues to age, the occurrence of osteoporosis becomes an increasing source of worry. But the good news is that osteoporosis can be prevented and treated. The European Commission is involved in research studying the impact of diet and gene-nutrient interactions on calcium and bone metabolism, and a novel isotopic tracer method is also being evaluated to study and quantify these processes. This new method will be compared to already-established methods (bone mineral density, biochemical markers) in an effort to protect and improve the quality of life of Europe’s ageing population. Further research on the biomechanical aspects of bone structure and strength, and on the reliability and safety of prosthetic implants is also being carried out at the European Commission’s Joint Research Centre (JRC) to address the area of post-fracture treatment strategies. These projects are funded by the European Commission’s Directorates General for Research, Health and Consumer Protection, and the JRC.



Commissioner Philippe Busquin expresses his own concern: “Fractures are the most frequent and serious complication of osteoporosis. Any bone can be affected, but of special concern are fractures of the hip and spine. A hip fracture almost always requires hospitalisation and major surgery. It can impair a person’s ability to walk unassisted and may cause prolonged or permanent disability and reduce the quality of life. Hospital costs for hip fractures alone amounted to over 3,500 million Euro in the EU in 1999. And the problem will only increase, as it has been quoted that the proportion of the EU population aged over 80 will triple over the next 50 years. EU action is therefore essential to tackle this problem.”

Menopause is the single greatest risk for osteoporosis; others include gender, age, family history, hormone deficiencies, low calcium, excessive alcohol and caffeine consumption, and cigarette smoking. In many cases, bones weaken when levels of calcium, phosphorous and other minerals in bones are low. As the prevalence of osteoporosis increases it must be considered as a serious public health concern.


Therefore, new alternative techniques to assess the impact of diet on bone loss are needed to establish recommendations for the prevention of osteoporosis, as well as improving existing methods of treatment after fractures have occurred.

This is why an EU-funded project called OSTEODIET has been established to explore the capabilities of a new isotopic tracer method technique. The European Commission’s Joint Research Centre (Institute for Reference Materials and Measurements) is working with the project partners* to evaluate a novel isotopic tracer method for assessing the impact of diet on bone loss. IRMM has certified a series of 41Ca enriched isotopic reference materials (RMs) to be used, and this new method will be compared to already established methods (bone mineral density, biochemical markers) to evaluate its effectiveness.

Isotopic Tracer Research:

To date, 24 post-menopausal women in the Zurich area have received an oral dose of 41Ca. (A woman is considered postmenopausal when she has not had a menstrual period for more than 12 consecutive months). The 1-year labelling period for the first subjects involved will be completed in August 2002. Urine samples are currently analysed for 41Ca to establish the urinary excretion pattern and to confirm that steady state conditions are reached. When confirmed, the women will participate in a randomised crossover calcium supplementation trial to assess the potential of the technique. Biomarkers and compartmental analysis using stable isotope techniques will be used in parallel for validation purposes, and will allow the evaluation of the power of 41Ca as a novel tool in bone research for establishing recommendations for osteoporosis prevention.

Research Background:

Smart approaches for women of all ages towards this potential health risk include taking preventive steps and understanding and reviewing the risk factors involved in developing osteoporosis. However, the impact of factors such as caffeine consumption and high protein intake, as well as the beneficial effect of taking calcium supplements is still being debated - despite decades of research. This can be attributed, at least partly, to the limitations of the methodologies available to bone researchers. Bone mineral density measurements are still considered the "gold standard" in bone research, as changes in bone health can be measured directly. However, it takes several years to identify small changes induced by dietary or life style factors. Biochemical markers, or ‘biomarkers’ of bone metabolism are more sensitive and small changes in bone accretion and bone resorption can be identified in a couple of months, when based on the concentration of the respective biomarkers in urine or plasma. However, their usefulness is limited, as they are indirect measures of bone metabolism and, as independent measures, they do not allow the assessment of bone balance. This is why alternative techniques such as the isotopic tracer method are needed.

Research Strategy:

In osteoporosis research, 41Ca, a long-lived radionuclide with a half-life of 105,000 years - virtually non-existent in nature - is a very promising novel approach. Because 41Ca can be detected at highest sensitivity and only minute amounts are required to label bone calcium isotopically, any potential health risks are negligible. After being administered orally, 41Ca that is not incorporated into bone is excreted in urine within one year. Later, 41Ca in urine is released directly from bone. First human experiments suggest that a change in bone Ca turnover can be identified in less than 2 months via changes in urinary 41Ca excretion. This makes it the most powerful technique to monitor changes in bone metabolism to date.

In order to establish urinary 41Ca excretion patterns, ratios of 41Ca relative to natural Ca have to be measured in urine over 8 orders of magnitude down to 10-11 - which compares to the detection of a single grain of salt in 5 tons of sugar. Three of the most powerful mass spectrometric techniques available to date, i. e. Thermal Ionisation Mass Spectrometry (TIMS), Resonance Ionisation Mass Spectrometry (RIMS) and Accelerator Mass Spectrometry (AMS) have to be used in combination for these challenging measurements. The set of reference materials covering 41Ca/40Ca isotope ratios over 9 orders of magnitude, will allow calibration of the techniques against each other and provides the basis for future data comparison. The emergence of new techniques such as the isotopic tracer method will held determine detailed recommendations for the prevention of osteoporosis to protect the health and safety of EU citizens.

Further research at the JRC’s Institute for Health and Consumer Protection involves studies of the biomechanics of bone and bone-implant interfaces at both macroscopic and microscopic scales. This includes studies of the curing of bone cements using advanced optical metrology techniques, and measurements of the actual mechanical properties of basic bone material using the nanoindentation technique. The reliability and safety of prosthetic implants is also being investigated - in particular, clinically relevant testing methods for prosthetic devices (mainly orthopaedic hip implants) are being developed and assessed.

Millions of people in the European Union suffer to some degree from osteoporosis, which may not become evident until a fracture actually occurs. At that point there is no cure, only treatments or diets that may help to reduce further bone loss and prevent further fractures. Therefore, a low-cost, easy-to-use method for osteoporosis diagnosis and bone-quality monitoring would allow high-risk patients to be identified, and appropriate action to be taken to reduce bone fracture probability. The JRC’s multi-faceted research into osteoporosis aims to help achieve such a method.


* ETH Zurich (Switzerland), University of Mainz (Germany), University College Cork (Ireland) and The Danish Veterinary and Food Administration (Denmark)


For further information, please contact:
Doris Florian
IRMM, JRC Geel
Phone +32 14 571 272
Fax +32-14-584-273
doris.florian@irmm.jrc.be

Media contact person:
Catherine Shiels
JRC, Ispra
Tel: +39.0332.789671/9889
Fax: +39.0332.785409
Catherine.shiels@cec.eu.int

Catherine Shiels | European Commission

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>