Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clotted fat in the blood can be separated with ultrasound

24.09.2002


An entirely new method for purifying blood has been developed at the Lund Institute of Technology, LTH, in Sweden. The blood is led out in hair-thin channels and is processed with ultrasound. A company in the neighboring research village IDEON is now perfecting the first medical application: a treatment to separate out clotted fat so-called fat embolin blood. But the method is a general one and can be applied to other medical treatments.



Heart surgery can be troubled by certain intellectual disturbances: such as memory, learning, and counting in the head function less well than before the operation. These problems often disappear after a few weeks or a couple of months, but up to 30 percent of patients are permanently affected.

“The cause of the phenomenon is a bone of contention,” says Associate Professor Henrik Jönsson at the Thorax Clinic in Lund.


In connection with heart surgery, bleeding causes blood to gather in the heart and lungs. This blood is usually suctioned up and returned to the patient. This is a natural process considering the shortage of donated blood and the risk that is always involved in transfusing blood from people other than the patient.

“In the early 1990s Dixon Moody discovered that patients who have had heart surgery have fat emboli in the brain. Research up to 1998 then showed that this clotted fat comes from the area operated on. I personally met Dixon Moody and asked him how many fat clots there are in the brain after heart surgery. His answer was: ‘About three million!’”

Henrik Jönsson has conducted research in the same field and started to wonder whether it would be possible to purify the blood with the help of ultrasound. He contacted the Department of Electrical Measurements at LTH, a pioneer in the use of ultrasound for medical purposes. Different components in the blood reflect ultrasound in different ways, a phenomenon called acoustic impedance. Henrik Jönsson’s idea was that if blood were exposed to a standing acoustical wave, the blood cells would gather at the nodes (where the waves intersect each other) and the fat in the opposite positions, at the antinodes.

The blood is pumped into a chamber. Ultrasound can then be directed in such a way that the fat is pressed against the sides of the chamber. The blood is driven forward through the chamber, but the fat is forced out in side-channels. This worked in principle, but in practice the process was disturbed by vortexes that built up in the side-channels. At this juncture, Professor Thomas Laurell at Electronic Measurements suggested that the process should be scaled down to the micro format.

“We etched the channels in silicon chips. In this way we avoided the vortexes,” says Thomas Laurell. On the other hand, the flow is tiny. A single channel lets through only 0.3 ml/hr. But that problem is easily solved by simultaneously pumping the blood through several parallel channels on the chip. At present we have achieved a flow of 60 ml/hr with one chip. The objective is to deploy a few chips to attain a rate of one liter per hour. The method will then be practicable. The degree of purification is also high: at least 95% of the fat emboli are removed in the process.

Two years ago Henrik Jönsson established the Ideon company Erysave AB, where Thomas Laurell is now an associate. They are developing a silicon rack containing many parallel channels that are nine by nine centimeters in full scale. In industrial production, however, silicon would be too expensive as a material base, and Erysave is working on a disposable component of form-sprayed plastic. They are applying the same technique as is used for impressing CDs.

Mats Nygren | alfa
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>