Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clotted fat in the blood can be separated with ultrasound

24.09.2002


An entirely new method for purifying blood has been developed at the Lund Institute of Technology, LTH, in Sweden. The blood is led out in hair-thin channels and is processed with ultrasound. A company in the neighboring research village IDEON is now perfecting the first medical application: a treatment to separate out clotted fat so-called fat embolin blood. But the method is a general one and can be applied to other medical treatments.



Heart surgery can be troubled by certain intellectual disturbances: such as memory, learning, and counting in the head function less well than before the operation. These problems often disappear after a few weeks or a couple of months, but up to 30 percent of patients are permanently affected.

“The cause of the phenomenon is a bone of contention,” says Associate Professor Henrik Jönsson at the Thorax Clinic in Lund.


In connection with heart surgery, bleeding causes blood to gather in the heart and lungs. This blood is usually suctioned up and returned to the patient. This is a natural process considering the shortage of donated blood and the risk that is always involved in transfusing blood from people other than the patient.

“In the early 1990s Dixon Moody discovered that patients who have had heart surgery have fat emboli in the brain. Research up to 1998 then showed that this clotted fat comes from the area operated on. I personally met Dixon Moody and asked him how many fat clots there are in the brain after heart surgery. His answer was: ‘About three million!’”

Henrik Jönsson has conducted research in the same field and started to wonder whether it would be possible to purify the blood with the help of ultrasound. He contacted the Department of Electrical Measurements at LTH, a pioneer in the use of ultrasound for medical purposes. Different components in the blood reflect ultrasound in different ways, a phenomenon called acoustic impedance. Henrik Jönsson’s idea was that if blood were exposed to a standing acoustical wave, the blood cells would gather at the nodes (where the waves intersect each other) and the fat in the opposite positions, at the antinodes.

The blood is pumped into a chamber. Ultrasound can then be directed in such a way that the fat is pressed against the sides of the chamber. The blood is driven forward through the chamber, but the fat is forced out in side-channels. This worked in principle, but in practice the process was disturbed by vortexes that built up in the side-channels. At this juncture, Professor Thomas Laurell at Electronic Measurements suggested that the process should be scaled down to the micro format.

“We etched the channels in silicon chips. In this way we avoided the vortexes,” says Thomas Laurell. On the other hand, the flow is tiny. A single channel lets through only 0.3 ml/hr. But that problem is easily solved by simultaneously pumping the blood through several parallel channels on the chip. At present we have achieved a flow of 60 ml/hr with one chip. The objective is to deploy a few chips to attain a rate of one liter per hour. The method will then be practicable. The degree of purification is also high: at least 95% of the fat emboli are removed in the process.

Two years ago Henrik Jönsson established the Ideon company Erysave AB, where Thomas Laurell is now an associate. They are developing a silicon rack containing many parallel channels that are nine by nine centimeters in full scale. In industrial production, however, silicon would be too expensive as a material base, and Erysave is working on a disposable component of form-sprayed plastic. They are applying the same technique as is used for impressing CDs.

Mats Nygren | alfa
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>