Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart size and function uncoupled by researchers

20.09.2002


Proteins that work in immune system also play fundamental role in heart size and function



Researchers have identified two proteins that play fundamental roles in heart size and function and have genetically uncoupled them, a discovery the scientists hope will lead to better treatments for those with cardiovascular disease.

"We initially had a hint that the protein called PTEN controls cell size," says Josef Penninger, professor of medical biophysics and immunology at U of T, and lead author of a paper in the Sept. 20 issue of Cell. "We knew that cardiovascular disease triggers increased heart size and eventually heart failure so we set out to figure out if PTEN also has a function in the heart. We found that PTEN is absolutely critical to how large our hearts become. But to find out that it also plays a major part in controlling heart muscle pumping and function was completely novel and unexpected."


The PTEN and PI3K alpha and gamma proteins work in the body’s immune system. PTEN is also a major tumor suppressor for many cancers while PI3K gamma is known to control migration of white blood cells. Using genetically engineered mice, Penninger led an international team of researchers to examine what would happen if either of these proteins were removed from hearts.

Unchecked, PI3K alpha produces something that makes the heart bigger, Penninger explains. PTEN works as a negative regulator by shutting it down. When the researchers removed PTEN, the mice developed huge hearts; when production of the PI3K alpha protein was shut down, the hearts were only half-size. These two proteins work together to control heart size.

The researchers were further intrigued when they examined how the large and small hearts functioned. They found that the PI3K gamma protein, which governs how the heart muscle contracts and pumps, also works with PTEN in determining efficient heart function.

"The data is black and white," says Penninger. "When we knocked out PTEN, we had a huge heart and less function; when we knocked out PI3K gamma, we had normal heart size and much better function. With both of these proteins shut down, we had huge hearts and much better function. When we took out PI3K alpha, the mice had tiny hearts but normal function, and when we took out both PTEN and PI3K alpha, the mice had tiny hearts and heart failure. With these genes we can determine heart size and can genetically control how well our hearts pump, irrespective of the heart being normal or enlarged."

According to the World Health Organization, cardiovascular disease will be the most common cause of death within 20 years. This research goes directly to helping alleviate this disease, the researchers say. Every patient with heart or cardiovascular disease goes through a stage of heart enlargement. Those with hypertension, for example, need their heart to pump and contract more; as a result, the heart muscle enlarges to compensate for the extra work. At a certain point, however, this compensation doesn’t work anymore and the heart starts to fail.

The scientists hope that this research will form the basis for better treatments for people with chronic heart failure or cardiovascular disease. "The problem now is that there is no drug which maintains the pumping function of the heart," says Penninger. "We found the proteins that genetically control this. So the hope is that if you can shut down PI3K gamma, the heart will function much better after a heart attack or chronic heart failure, even if the patient has an enlarged heart."

The team of researchers who worked on this study are: Professor Peter Backx of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; Michael Crackower, a post-doctoral fellow in Penninger’s lab; Gavin Oudit, a clinician scientist in Backx’s lab; Ivona Kozieradzki, Renu Sarao, Hai-Ying Cheng and Antonio Oliveira-dos-Santos of medical biophysics and immunology at U of T; Hui Sun of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; and scientists from Japan, Italy, the United States and Switzerland.

Penninger was supported by a Canada Research Chair in Cell Biology, the National Cancer Institute of Canada and the Institute for Molecular Biotechnology of the Austrian Academy of Sciences. Crackower was supported in part by a Canadian Institutes of Health Research fellowship. The study was also supported by AMGEN Inc., the American Heart Association and the National Institutes of Health.

CONTACT:

U of T Public Affairs, ph: (416) 978-5949; email: jf.wong@utoronto.ca

Janet Wong | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/bin3/020919a.asp

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>