Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart size and function uncoupled by researchers

20.09.2002


Proteins that work in immune system also play fundamental role in heart size and function



Researchers have identified two proteins that play fundamental roles in heart size and function and have genetically uncoupled them, a discovery the scientists hope will lead to better treatments for those with cardiovascular disease.

"We initially had a hint that the protein called PTEN controls cell size," says Josef Penninger, professor of medical biophysics and immunology at U of T, and lead author of a paper in the Sept. 20 issue of Cell. "We knew that cardiovascular disease triggers increased heart size and eventually heart failure so we set out to figure out if PTEN also has a function in the heart. We found that PTEN is absolutely critical to how large our hearts become. But to find out that it also plays a major part in controlling heart muscle pumping and function was completely novel and unexpected."


The PTEN and PI3K alpha and gamma proteins work in the body’s immune system. PTEN is also a major tumor suppressor for many cancers while PI3K gamma is known to control migration of white blood cells. Using genetically engineered mice, Penninger led an international team of researchers to examine what would happen if either of these proteins were removed from hearts.

Unchecked, PI3K alpha produces something that makes the heart bigger, Penninger explains. PTEN works as a negative regulator by shutting it down. When the researchers removed PTEN, the mice developed huge hearts; when production of the PI3K alpha protein was shut down, the hearts were only half-size. These two proteins work together to control heart size.

The researchers were further intrigued when they examined how the large and small hearts functioned. They found that the PI3K gamma protein, which governs how the heart muscle contracts and pumps, also works with PTEN in determining efficient heart function.

"The data is black and white," says Penninger. "When we knocked out PTEN, we had a huge heart and less function; when we knocked out PI3K gamma, we had normal heart size and much better function. With both of these proteins shut down, we had huge hearts and much better function. When we took out PI3K alpha, the mice had tiny hearts but normal function, and when we took out both PTEN and PI3K alpha, the mice had tiny hearts and heart failure. With these genes we can determine heart size and can genetically control how well our hearts pump, irrespective of the heart being normal or enlarged."

According to the World Health Organization, cardiovascular disease will be the most common cause of death within 20 years. This research goes directly to helping alleviate this disease, the researchers say. Every patient with heart or cardiovascular disease goes through a stage of heart enlargement. Those with hypertension, for example, need their heart to pump and contract more; as a result, the heart muscle enlarges to compensate for the extra work. At a certain point, however, this compensation doesn’t work anymore and the heart starts to fail.

The scientists hope that this research will form the basis for better treatments for people with chronic heart failure or cardiovascular disease. "The problem now is that there is no drug which maintains the pumping function of the heart," says Penninger. "We found the proteins that genetically control this. So the hope is that if you can shut down PI3K gamma, the heart will function much better after a heart attack or chronic heart failure, even if the patient has an enlarged heart."

The team of researchers who worked on this study are: Professor Peter Backx of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; Michael Crackower, a post-doctoral fellow in Penninger’s lab; Gavin Oudit, a clinician scientist in Backx’s lab; Ivona Kozieradzki, Renu Sarao, Hai-Ying Cheng and Antonio Oliveira-dos-Santos of medical biophysics and immunology at U of T; Hui Sun of physiology and medicine at U of T’s Heart & Stroke/Richard Lewar Centre; and scientists from Japan, Italy, the United States and Switzerland.

Penninger was supported by a Canada Research Chair in Cell Biology, the National Cancer Institute of Canada and the Institute for Molecular Biotechnology of the Austrian Academy of Sciences. Crackower was supported in part by a Canadian Institutes of Health Research fellowship. The study was also supported by AMGEN Inc., the American Heart Association and the National Institutes of Health.

CONTACT:

U of T Public Affairs, ph: (416) 978-5949; email: jf.wong@utoronto.ca

Janet Wong | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/bin3/020919a.asp

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>